Math, asked by aryan91927, 1 year ago

sina+sinb+sinc=4cosa/2 cosb/2 cosc/2​

Answers

Answered by MaheswariS
65

Answer:

sinA+sinB+sinC=4\:cos\frac{A}{2}\:cos\frac{B}{2}\:cos\frac{C}{2}

Step-by-step explanation:

In ΔABC , Show that

sinA+sinB+sinC=4\:cos\frac{A}{2}\:cos\frac{B}{2}\:cos\frac{C}{2}

Formula\:used:\\\\sinC+sinD=2\:sin(\frac{C+D}{2})\:cos(\frac{C-D}{2})\\\\sinA=2\:sin\frac{A}{2}\:cos\frac{A}{2}

In ΔABC , A+B+C=\pi

sinA+sinB+sinC\\\\=2\:sin(\frac{A+B}{2})cos(\frac{A-B}{2})+2\:sin\frac{C}{2}\:cos\frac{C}{2}\\\\=2\:sin(\frac{\pi-C}{2})cos(\frac{A-B}{2})+2\:sin\frac{C}{2}\:cos\frac{C}{2}

=2\:sin(\frac{\pi}{2}-\frac{C}{2})cos(\frac{A-B}{2})+2\:sin\frac{C}{2}\:cos\frac{C}{2}\\\\=2\:cos\frac{C}{2}cos(\frac{A-B}{2})+2\:sin\frac{C}{2}\:cos\frac{C}{2}\\\\=2\:cos\frac{C}{2}[cos(\frac{A-B}{2})+\:sin\frac{C}{2}]

=2\:cos\frac{C}{2}[cos(\frac{A-B}{2})+\:sin\frac{\pi-(A+B)}{2}]\\\\=2\:cos\frac{C}{2}[cos(\frac{A-B}{2})+\:sin(\frac{\pi}{2}-\frac{A+B}{2})]\\\\=2\:cos\frac{C}{2}[cos(\frac{A-B}{2})+cos(\frac{A+B}{2})]

=2\:cos\frac{C}{2}[cos(\frac{A}{2}+\frac{B}{2})+cos(\frac{A}{2}-\frac{B}{2})]\\\\=2\:cos\frac{C}{2}[2\:cos\frac{A}{2}\:cos\frac{B}{2}]\\\\=4\:cos\frac{A}{2}\:cos\frac{B}{2}\:cos\frac{C}{2}

Answered by iamriteshdubey
10

I hope this answer helps you

Attachments:
Similar questions