Math, asked by samikshaswapnali05, 7 months ago

sinA+sinB+sinC=4cosA/2cosB/2cosC/2 prove that​

Answers

Answered by preetkaur9066
0

Answer:

We have,

sin

A

+

sin

B

−−−−−−−−−−−

+

sin

C

=

2

sin

(

A

+

B

2

)

cos

(

A

B

2

)

+

sin

C

...

.

(

)

.

But,

A

+

B

+

C

=

π

A

+

B

=

π

C

(

A

+

B

2

)

=

π

C

2

.

(

A

+

B

2

)

=

π

2

C

2

.

sin

(

A

+

B

2

)

=

sin

(

π

2

C

2

)

=

cos

(

C

2

)

...

.

(

1

)

.

Also,

sin

C

=

2

sin

(

C

2

)

cos

(

C

2

)

...

...

...

(

2

)

.

Utilising

(

1

)

and

(

2

)

in

(

)

,

we get,

sin

A

+

sin

B

+

sin

C

,

=

2

cos

(

C

2

)

cos

(

A

B

2

)

+

2

sin

(

C

2

)

cos

(

C

2

)

,

=

2

cos

(

C

2

)

{

cos

(

A

B

2

)

+

sin

(

C

2

)

}

,

=

2

cos

(

C

2

)

{

cos

(

A

B

2

)

+

sin

(

π

(

A

+

B

)

2

)

...

[

a

s

,

A

+

B

+

C

=

π

]

,

=

2

cos

(

C

2

)

{

cos

(

A

B

2

)

+

sin

(

π

2

A

+

B

2

)

}

,

=

2

cos

(

C

2

)

{

cos

(

A

B

2

)

+

cos

(

A

+

B

2

)

}

,

=

2

cos

(

C

2

)

2

cos

A

B

2

+

A

+

B

2

2

cos

A

B

2

A

+

B

2

2

,

=

2

cos

(

C

2

)

{

2

cos

(

A

2

)

cos

(

B

2

)

}

,

=

4

cos

(

A

2

)

cos

(

B

2

)

cos

(

C

2

)

...

.

[

,

cos

(

x

)

=

cos

x

]

.

Hence, the Proof.

Enjoy Maths.!

Similar questions