Math, asked by mandalprince2078, 4 days ago

sinA-sinB-sinC=4cosA/2cosB/2sinC/2​

Answers

Answered by yashdhanik1122
0

Answer:

sinA+sinB+sinC=4cos

2

A

cos

2

B

cos

2

C

Step-by-step explanation:

In ΔABC , Show that

sinA+sinB+sinC=4\:cos\frac{A}{2}\:cos\frac{B}{2}\:cos\frac{C}{2}sinA+sinB+sinC=4cos

2

A

cos

2

B

cos

2

C

\begin{gathered}Formula\:used:\\\\sinC+sinD=2\:sin(\frac{C+D}{2})\:cos(\frac{C-D}{2})\\\\sinA=2\:sin\frac{A}{2}\:cos\frac{A}{2}\end{gathered}

Formulaused:

sinC+sinD=2sin(

2

C+D

)cos(

2

C−D

)

sinA=2sin

2

A

cos

2

A

In ΔABC , A+B+C=\piA+B+C=π

\begin{gathered}sinA+sinB+sinC\\\\=2\:sin(\frac{A+B}{2})cos(\frac{A-B}{2})+2\:sin\frac{C}{2}\:cos\frac{C}{2}\\\\=2\:sin(\frac{\pi-C}{2})cos(\frac{A-B}{2})+2\:sin\frac{C}{2}\:cos\frac{C}{2}\end{gathered}

sinA+sinB+sinC

=2sin(

2

A+B

)cos(

2

A−B

)+2sin

2

C

cos

2

C

=2sin(

2

π−C

)cos(

2

A−B

)+2sin

2

C

cos

2

C

Similar questions