Math, asked by OMERS1DD1QU1, 1 year ago

sinA +sinB - sinC =4sinA/2 sinB/2 cosC/2

Attachments:

Answers

Answered by ManuKushwah
23
this is the sol. than u for patience
Attachments:

Anonymous: Nice handwriting.
ManuKushwah: yeah i know actually yeh kisi aur ka ans kisi aur mein post ho gaya
Anonymous: Oh..
Answered by mysticd
50

Answer:

 sinA+sinB-sinC=4sin\frac{A}{2} sin\frac{B}{2} cos\frac{C}{2}

Step-by-step explanation:

LHS = sinA+sinB-sinC

 = 2sin\left(\frac{A+B}{2}\right) cos\left(\frac{A-B}{2}\right)- 2sin\frac{C}{2} cos\frac{C}{2}

_________________________

We know that,

i)sinA+sinB = 2sin\left(\frac{A+B}{2}\right) sin\left(\frac{A-B}{2}\right)\\ii)sinC = 2sin\frac{C}{2} cos\frac{C}{2}

iii) A+B+C = 180

\implies A+B = 180-C\\\implies \frac{A+B}{2}=90-\frac{C}{2}\\\implies sin\left(\frac{A+B}{2}\\=sin\left(90-\frac{C}{2}\right)\\=cos\frac{C}{2}

_________________________

=2cos\frac{C}{2} cos\left(\frac{A-B}{2}\right)- 2sin\frac{C}{2} cos\frac{C}{2}

=2cos\frac{C}{2} [cos\left(\frac{A-B}{2}\right)- sin\frac{C}{2} ]

=2cos\frac{C}{2} [cos\left(\frac{A-B}{2}\right)- cos\left(\frac{A+B}{2}\right) ]

=2cos\frac{C}{2} [2sin\left(\frac{\frac{A-B+A+B}{2}}{2}\right) sin\left(\frac{\frac{A+B-(A-B)}{2}}{2}\right) ]

=2cos\frac{C}{2} [2sin\frac{2A}{4} sin\frac{(A+B-A+B)}{4} ]

=2cos\frac{C}{2} [2sin\frac{2A}{4} sin\frac{2B}{4} ]

=2cos\frac{C}{2} [2sin\frac{A}{2} sin\frac{B}{2} ]

=4cos\frac{C}{2} sin\frac{A}{2} sin\frac{B}{2}

=4sin\frac{A}{2} sin\frac{B}{2} cos\frac{C}{2}

Therefore,

 sinA+sinB-sinC=4sin\frac{A}{2} sin\frac{B}{2} cos\frac{C}{2}

•••♪

Similar questions