sinA+ sinB+ sinC/sinA +sinB-sinC=cotA/2 cotB/2
Answers
Answered by
3
Answer:
Let A+B+C=θ
sin(A+B2)=cos(C2)sin(A+B2)=cos(C2)
D→sinA+sinB−sinCD→sinA+sinB-sinC
=2sin(A+B2)cos(A−B2)−sinC=2sin(A+B2)cos(A-B2)-sinC
=2cos(C2)cos(A−B2)−2sin(C2)cos(C2)=2cos(C2)cos(A-B2)-2sin(C2)cos(C2)
=2cos(C2)[cos(A−B2)−sin(C2)]=2cos(C2)[cos(A-B2)-sin(C2)]
=2cos(C2)[cos(A−B2)−cos(A+B2)]=2cos(C2)[cos(A-B2)-cos(A+B2)]
=2cos(C2)[2sin(A2)sin(B2)]=2cos(C2)[2sin(A2)sin(B2)]
=4sinn(A2)sin(B2)cos(C2)=4sinn(A2)sin(B2)cos(C2)
N→sinA+sinB+sinCN→sinA+sinB+sinC
=2sin(A+B2)cos(A−B2)+2sin(C2)cos(C2)=2sin(A+B2)cos(A-B2)+2sin(C2)cos(C2)
=2cos(C2)cos(A−B2)+2sin(C2)cos(C2)=2cos(C2)cos(A-B2)+2sin(C2)cos(C2)
=2cos(C2)[cos(A−B2)+cos(A+B2)]=2cos(C2)[cos(A-B2)+cos(A+B2)]
=2cos(C2)[2cos(A2)cos(B2)]=2cos(C2)[2cos(A2)cos(B2)]
=4cos(A2)cos(B2)cos(C2)=4cos(A2)cos(B2)cos(C2)
ND=4cos(A2)cos(B2)cos(C2)4sin(A2)sin(B2)cos(C2)ND=4cos(A2)cos(B2)cos(C2)4sin(A2)sin(B2)cos(C2)
=cot(A2)cot(B2)=cot(A2)cot(B2).
Hence,Proved..
Similar questions
Social Sciences,
4 months ago
Math,
4 months ago
Computer Science,
10 months ago
English,
10 months ago
Math,
1 year ago
Math,
1 year ago