Physics, asked by anuvarshini98, 1 year ago

sine of angle between the vectors 3 ICAP + 2 J cap + 2 k cap and two ICAP - 2 J cap + 4 k cap is​

Answers

Answered by MaheswariS
16

Answer:

sin\theta=\sqrt{\frac{77}{102}}

Explanation:

Formula used:

\text{The angle between the the vectors }\vec{a}\text{ and }\vec{b}\text{ is}

\boxed{sin\theta=\frac{|\vec{a}\times\vec{b}|}{|\vec{a}||\vec{b}|}}

\vec{a}=3\vec{i}+2\vec{j}+2\vec{k}

\vec{b}=2\vec{i}-2\vec{j}+4\vec{k}

\vec{a}\times\vec{b}=\left|\begin{array}{ccc}\vec{i}&\vec{j}&\vec{k}\\3&2&2\\2&-2&4}\end{array}\right|

\vec{a}\times\vec{b}=\vec{i}(8+4)-\vec{j}(12-4)+\vec{k}(-6-4)

\implies\:\vec{a}\times\vec{b}=12\vec{i}-8\vec{j}-10\vec{k}

\implies\:\vec{a}\times\vec{b}=2(6\vec{i}-4\vec{j}-5\vec{k})

|\vec{a}\times\vec{b}|=2\sqrt{36+25+16}

|\vec{a}\times\vec{b}|=2\sqrt{77}

|\vec{a}|=\sqrt{9+4+4}=\sqrt{17}

|\vec{b}|=\sqrt{4+4+16}=\sqrt{24}=2\sqrt{6}

Now,

sin\theta=\frac{|\vec{a}\times\vec{b}|}{|\vec{a}|\:|\vec{b}|}

\implies\:sin\theta=\frac{2\sqrt{77}}{\sqrt{17}\:2\sqrt{6}}

\implies\:sin\theta=\frac{\sqrt{77}}{\sqrt{17}\sqrt{6}}

\implies\:sin\theta=\frac{\sqrt{77}}{\sqrt{102}}

\implies\:\boxed{sin\theta=\sqrt{\frac{77}{102}}}

Answered by muscardinus
4

Angle, sin\theta=\dfrac{12i-10j-8k}{18.87}

Explanation:

It is given that,

\vec{A}=3i+2j+2k

\vec{B}=i-2j+4k

If we want to find the sine of angle between two vectors, it can be calculated using cross product formula as :

A\times B=|A||B| sin\theta

Magnitude of vector A, |A|=\sqrt{3^2+2^2+2^2}=4.12

Magnitude of vector B, |B|=\sqrt{1^2+2^2+4^2}=4.582

A\times B=(3i+2j+2k)\times (i-2j+4k)

A\times B=\begin{pmatrix}12&-10&-8\end{pmatrix}

A\times B=12i-10j-8k

sin\theta=\dfrac{A\times B}{|A||B|}

sin\theta=\dfrac{12i-10j-8k}{4.12\times 4.582}

sin\theta=\dfrac{12i-10j-8k}{18.87}

So, the sine of angle between A and B is \dfrac{12i-10j-8k}{18.87}. Hence, this is the required solution.

Learn more,

Cross product

https://brainly.in/question/12309029

Similar questions