Math, asked by anaya9, 1 year ago

Single ( FINAL ANSWER ) Values of - iota power 5 ,iota power 6, iots power 7, iota power 8 , iota power 9 .

➡ DON'T SPAM .
➡ BRAINLIEST QUESTION.

Answers

Answered by RabbitPanda
19

Heya....

●(-¡)^5=1

●(¡)^6=1

●(¡)^7=-1

●(¡)^8=1

●(¡)^9=-1

@skb

Answered by hotelcalifornia
2

Explanation:

  • In the concept of complex numbers, any value that comes as the square root of a negative number is an imaginary complex number.
  • For example, \sqrt{-10} , \sqrt{\frac{-3}{4} } etc are imaginary numbers and whose values cant be calculated.
  • For these numbers, a value called iota (i) is used. The value of iota is \sqrt{-1} .
  • For example, a number is written as

        \sqrt{-10}=\sqrt{10 × \sqrt{-1}=10i

From this information,

We get,

i=\sqrt{-1}

i^{2}= \sqrt{-1} × \sqrt{-1} = -1

i^{3} =i^{2}.i =-1 × i =-i

i^{4} =(i^{2}) ^{2}=(-1)^{2} =1

Now, According to the question,

  • -i^{5}

       -i^{5}=-i^{4}.i   =-(1)i

                            =-i  

  • i^{6}

       i^{6}=i^{4} .i^{2}   =(1)(-1)

                        =-1

  • i^{7}

      i^{7}=i^{4} .i^{2}. i   =(1)(-1)i

                         =-i

  • i^{8}

       i^{8}=i^{4}. i^{4}   =(1)(1)

                        =1

  • i^{9}

      i^{9}=i^{4} .i^{4}.i   =(1)(1)i

                           =i

Similar questions