Math, asked by vaibhavgaur529, 9 months ago

Sinhx=5 prove that x= loge(5+√26

Answers

Answered by MaheswariS
9

\textbf{Given:}

\mathrm{sinhx=5}

\textbf{To prove:}

\mathrm{x=log_e(5+\sqrt{26})}

\textbf{Solution:}

\text{Consider,}

\mathrm{sinhx=5}

\mathrm{\dfrac{e^x-e^{-x}}{2}=5}

\mathrm{e^x-e^{-x}=10}

\mathrm{e^x-\dfrac{1}{e^x}=10}

\mathrm{(e^x)^2-1=10\,e^x}

\mathrm{(e^x)^2-10\,e^x-1=0}

\mathrm{t^2-10t-1=0}\;\;\text{where}\,\mathrm{t=e^x}

\text{Using quadratic formula, we get}

\mathrm{t=\dfrac{-b\pm\sqrt{b^2-4ac}}{2a}}

\mathrm{t=\dfrac{10\pm\sqrt{100+4}}{2}}

\mathrm{t=\dfrac{10\pm\sqrt{104}}{2}}

\mathrm{t=\dfrac{10\pm\sqrt{4{\times}26}}{2}}

\mathrm{t=\dfrac{10{\pm}2\sqrt{26}}{2}}

\mathrm{t=5\pm\sqrt{26}}

\implies\mathrm{e^x=5\pm\sqrt{26}}

\implies\mathrm{x=log_e(5\pm\sqrt{26})}

\text{But x cannot be negative}

\boxed{\bf\mathrm{x=log_e(5+\sqrt{26})}}

\textbf{Hence proved}

Similar questions