Math, asked by omchaudhari3059, 1 year ago

(sino/(1-coto))+ (coso/(1-tano)) = sino + coso​

Answers

Answered by RvChaudharY50
24

||✪✪ QUESTION ✪✪||

(sinA/(1-cotA))+ (coso/(1-tanA)) = sinA + ccosA

|| ✰✰ ANSWER ✰✰ ||

we know that,

☛ cotA = cosA/sinA

☛ TanA = sinA/cosA

Putting these values in LHS , we get,

☞ (sinA/(1-cotA))+ (coso/(1-tanA))

☞ [sinA /( 1 - cosA/sinA) ] + [ cosA / (1 - sinA/cosA) ]

Now taking LCM of denominator part,

[ sinA / (sinA - cosA)/sinA ] + [ cosA / (cosA - sinA) /cosA]

☞ [ sin²A / (sinA - cosA) ] + [ cos²A / (cosA - sinA) ]

Now Taking (-1) common From Second part of Denominator we get,

[ sin²A / (sinA - cosA) ] - [ cos²A / (sinA - cosA) ]

☞ [ ( sin²A - cos²A ) / ( sinA - cosA) ]

Now, using ( - ) = (a+b)(a-b) in Numerator ,

[ (sinA + cosA) (sinA - cosA) / (SinA - cosA) ]

Now, (sinA - cosA ) will be cancel, and we get,

(SinA + cosA) = ❁❁RHS❁❁

✪✪ Hence Proved ✪✪

Similar questions