(sino/(1-coto))+ (coso/(1-tano)) = sino + coso
Answers
Answered by
24
||✪✪ QUESTION ✪✪||
(sinA/(1-cotA))+ (coso/(1-tanA)) = sinA + ccosA
|| ✰✰ ANSWER ✰✰ ||
we know that,
☛ cotA = cosA/sinA
☛ TanA = sinA/cosA
Putting these values in LHS , we get,
☞ (sinA/(1-cotA))+ (coso/(1-tanA))
☞ [sinA /( 1 - cosA/sinA) ] + [ cosA / (1 - sinA/cosA) ]
Now taking LCM of denominator part,
☞ [ sinA / (sinA - cosA)/sinA ] + [ cosA / (cosA - sinA) /cosA]
☞ [ sin²A / (sinA - cosA) ] + [ cos²A / (cosA - sinA) ]
Now Taking (-1) common From Second part of Denominator we get,
☞ [ sin²A / (sinA - cosA) ] - [ cos²A / (sinA - cosA) ]
☞ [ ( sin²A - cos²A ) / ( sinA - cosA) ]
Now, using (a² - b²) = (a+b)(a-b) in Numerator ,
☞ [ (sinA + cosA) (sinA - cosA) / (SinA - cosA) ]
Now, (sinA - cosA ) will be cancel, and we get,
☛ (SinA + cosA) = ❁❁RHS❁❁
✪✪ Hence Proved ✪✪
Similar questions