sino (t+tang )+ coso (It cotol =
(secot coseco).
Answers
Answered by
12
Step-by-step explanation:
we have to prove :
sinΦ(1+tanΦ)+cosΦ(1+cotΦ)
= (secΦ + cosecΦ)
LHS =( sinΦ)(1+[sinΦ/cosΦ])
+cosΦ(1+[cosΦ/sinΦ])
={(sinΦ)[(cosΦ+sinΦ)/(cosΦ)]}
+{cosΦ[(sinΦ+cosΦ)/(sinΦ)]}
={sin²Φ(cosΦ+sinΦ)+cos²Φ(sinΦ+cosΦ)}/(cosΦxsinΦ)
={(sin²Φ+cos²Φ)(cosΦ+sinΦ)}/(sinΦ.cosΦ)
=(cosΦ+sinΦ)/(sinΦ.cosΦ)
={(cosΦ)/(sinΦ.cosΦ)}+{(sinΦ)/(sinΦ.cosΦ)}
= (1/sinΦ) + (1/cosΦ)
= cosecΦ + secΦ = secΦ+cosecΦ
= RHS , hence proved
Similar questions