Math, asked by poorvibhatt27, 10 months ago

SinQ/cosecQ+cotQ=1-cos Q
Please answer

Answers

Answered by saivivek16
3

Step-by-step explanation:

Aloha !

sin theta/cosec theta +cot theta=1-cos theta

sin ∅ /1-cos∅=cosec∅+ cot∅

sin∅(1+cos∅)/1-cos∅×1+cos∅

sin∅(1+cos∅)/1-cos²∅

sin∅(1+cos∅)/sin²∅

1/sin∅+cos∅/sin∅

=cosec∅+cot∅

Thank you

@ Twilight Astro ✌️☺️♥️

Answered by umiko28
7

Answer:

\huge\underline{ \underline{ \red{your \: \: answer}}}

Step-by-step explanation:

 \sf\red{ \frac{sin \alpha }{cosec \alpha  + cot \alpha  } = 1 - cot \alpha  } \\ \\  \sf\pink{ =  >cosec \alpha   + cot \alpha  =  \frac{sin \alpha }{1 - cot \alpha }  } \\ \\  \sf\blue{R.H.S = \frac{sin \alpha }{1 -  cos \alpha } } \\ \\  \sf\orange{ multypling \: \frac{numeratore}{denominator}  \:  by \: (1 + cos \alpha )} \\ \\  \sf\purple{ =  >  \frac{sin \alpha (1 + cos \alpha )}{(1  -  cos \alpha )(1    + cos \alpha )} }  \\  \\ \sf\green{ =  >  \frac{sin \alpha (1  - cos \alpha )}{ {1}^{2} -  {cos}^{2}  \alpha  } } \\ \\  \sf\red{we \: know \: that \:  {sin}^{2} \alpha  +  {cos}^{2} \alpha  = 1  } \\ \\  \sf\pink{ =  >  {sin}^{2} \alpha  = 1 -  {cos}^{2} \alpha   } \\ \\  \sf\green{now   \:  \: \frac{sin \alpha(1  +  cos \alpha ) }{ {sin}^{2} \alpha  }  } \\   \\ \sf\blue{ =  >  \frac{1 + cos \alpha }{sin \alpha } }  \\  \\ \sf\orange{ =  >  \frac{1}{sin \alpha }  +  \frac{cos \alpha }{sin \alpha } }  \\ \\  \sf\red{ =  > cosec \alpha  + cot \alpha(L.H.S) }  \\ \\ \sf\blue{R.H.S=L.H.S} \\ \sf\pink{ \underline{ \underline{proved} }} \\  \\  \\  \\ \large\boxed{ \fcolorbox{green}{yellow}{hope \: it \: help \: you}}

Similar questions