sinQ - cosQ + 1 / sinQ + cos Q - 1 = 1/secQ - tanQ
Answers
Answered by
32
Anonymous:
Hard working!!
Answered by
12
Step-by-step explanation:
SinQ - CosQ + 1 / SinQ + CosQ - 1 = 1/SecQ - TanQ
LHS = SinQ/CosQ - CosQ/CosQ + 1/CosQ / SinQ/CosQ + CosQ/CosQ - 1/Cos . ( dividing the whole LHS by CosQ)
= (TanQ + SecQ) - 1 / (TanQ - SecQ) + 1
= {(TanQ + SecQ) - 1} (TanQ - SecQ) / {(TanQ - SecQ) + 1} ( TanQ - SecQ). {Multiplying the numerator and denominator by (TanQ - SecQ)}
= (Tan^2Q - Sec^2Q) - ( TanQ - SecQ) / (TanQ - SecQ + 1) ( TanQ - SecQ). ( Here I have just multiplied numerator wholly)
= -1 - (TanQ - SecQ) / (TanQ - SecQ) (TanQ - SecQ + 1)
= -1/TanQ - SecQ = 1/SecQ - TanQ . { by cancelling (TanQ - SecQ) we get this }
LHS = RHS ( Hence Proved)
Hope it helps!☺
Have a nice day!❤
Similar questions