Math, asked by sukhdevnain590, 1 year ago

sinQ - cosQ + 1 / sinQ + cos Q - 1 = 1/secQ - tanQ

Answers

Answered by Swarup1998
32
\boxed{\underline{\underline{\textsf{Formulas :}}}}

1.\:sinQ=2sin\frac{Q}{2}cos\frac{Q}{2}

2.\:cosQ=2cos^{2}\frac{Q}{2}-1

3.\:cosQ=1-2sin^{2}\frac{Q}{2}

4.\:sin^{2}\frac{Q}{2}+cos^{2}\frac{Q}{2}=1

5.\:a^{2}-b^{2}=(a+b)(a-b)

6.\:(a+b)^{2}=a^{2}+2ab+b^{2}

7.\:sec^{2}Q-tan^{2}Q=1

\boxed{\underline{\underline{\textsf{Proof 1 - ( For Class 10th ) :}}}}

\textsf{Now,}\:\frac{sinQ-cosQ+1}{sinQ+cosQ-1}

=\frac{tanQ-1+secQ}{tanQ+1-secQ}

\textsf{divided both the numerator and}
\textsf{the denominator by cosQ}

=\frac{(tanQ+secQ-1)}{(tanQ-secQ)+1}

=\frac{(tanQ+secQ-1)(tanQ+secQ)}{\{(tanQ-secQ)+1\}(tanQ+secQ)}

\textsf{multiplied both the numerator and}
\textsf{the denominator by (tanQ + secQ)}

=\frac{(tanQ+secQ-1)(tanQ+secQ)}{(tanQ-secQ)(tanQ+secQ)+(tanQ+secQ)}

=\frac{(tanQ+secQ-1)(tanQ+secQ)}{tan^{2}Q-sec^{2}Q+tanQ+secQ}

=\frac{(tanQ+secQ-1)(tanQ+secQ)}{-1+tanQ+secQ}

=tanQ+secQ

=\frac{1}{secQ-tanQ}

\to \boxed{\small{\frac{sinQ-cosQ+1}{sinQ+cosQ-1}=\dfrac{1}{secQ-tanQ}}}

\underline{\textsf{Hence, proved.}}

\boxed{\underline{\underline{\textsf{Proof 2 - ( Higher Classes ) :}}}}

Now,\:\frac{sinQ-cosQ+1}{sinQ+cosQ-1}

=\frac{sinQ+(1 -cosQ)}{sinQ-(1-cosQ)}

=\dfrac{2sin\frac{Q}{2}cos\frac{Q}{2}+2sin^{2}\frac{Q}{2}}{2sin\frac{Q}{2}cos\frac{Q}{2}-2sin^{2}\frac{Q}{2}}

=\dfrac{sin\frac{Q}{2}(cos\frac{Q}{2}+sin\frac{Q}{2})}{sin\frac{Q}{2}(cos\frac{Q}{2}-sin\frac{Q}{2})}

=\dfrac{(cos\frac{Q}{2}+sin\frac{Q}{2})(cos\frac{Q}{2}+sin\frac{Q}{2})}{(cos\frac{Q}{2}-sin\frac{Q}{2})(cos\frac{Q}{2}+sin\frac{Q}{2})}

=\dfrac{cos^{2}\frac{Q}{2}+sin^{2}\frac{Q}{2}+2sin\frac{Q}{2}cos\frac{Q}{2}}{cos^{2}\frac{Q}{2}-sin^{2}\frac{Q}{2}}

=\dfrac{1+sinQ}{cosQ}

=\dfrac{1}{cosQ}+\dfrac{sinQ}{cosQ}

=secQ+tanQ

=\dfrac{1}{secQ-tanQ}

\to \boxed{\small{\frac{sinQ-cosQ+1}{sinQ+cosQ-1}=\dfrac{1}{secQ-tanQ}}}

\underline{\textsf{Hence, proved.}}

\boxed{\underline{\underline{\textsf{Proof 3 - ( Long Method ) :}}}}

Now,\:\frac{sinQ-cosQ+1}{sinQ+cosQ-1}

=\dfrac{2sin\frac{Q}{2}cos\frac{Q}{2}-(2cos^{2}\frac{Q}{2}-1)+1}{2sin\frac{Q}{2}cos\frac{Q}{2}+(2cos^{2}\frac{Q}{2}-1)-1}

=\dfrac{2sin\frac{Q}{2}cos\frac{Q}{2}-2cos^{2}\frac{Q}{2}+1+1}{2sin\frac{Q}{2}cos\frac{Q}{2}+2cos^{2}\frac{Q}{2}-1-1}

=\dfrac{2sin\frac{Q}{2}cos\frac{Q}{2}-2cos^{2}\frac{Q}{2}+2}{2sin\frac{Q}{2}cos\frac{Q}{2}+2cos^{2}\frac{Q}{2}-2}

=\dfrac{2(sin\frac{Q}{2}cos\frac{Q}{2}-cos^{2}\frac{Q}{2}+1)}{2(sin\frac{Q}{2}cos\frac{Q}{2}+cos^{2}\frac{Q}{2}-1)}

=\small{\dfrac{sin\frac{Q}{2}cos\frac{Q}{2}-cos^{2}\frac{Q}{2}+sin^{2}\frac{Q}{2}+cos^{2}\frac{Q}{2}}{sin\frac{Q}{2}cos\frac{Q}{2}+cos^{2}\frac{Q}{2}-sin^{2}\frac{Q}{2}+cos^{2}\frac{Q}{2}}}

=\dfrac{sin\frac{Q}{2}cos\frac{Q}{2}+sin^{2}\frac{Q}{2}}{sin\frac{Q}{2}cos\frac{Q}{2}-sin^{2}\frac{Q}{2}}

=\dfrac{sin\frac{Q}{2}(cos\frac{Q}{2}+sin\frac{Q}{2})}{sin\frac{Q}{2}(cos\frac{Q}{2}-sin\frac{Q}{2})}

=\dfrac{(cos\frac{Q}{2}+sin\frac{Q}{2})(cos\frac{Q}{2}+sin\frac{Q}{2})}{(cos\frac{Q}{2}-sin\frac{Q}{2})(cos\frac{Q}{2}+sin\frac{Q}{2})}

=\dfrac{cos^{2}\frac{Q}{2}+sin^{2}\frac{Q}{2}+2sin\frac{Q}{2}cos\frac{Q}{2}}{cos^{2}\frac{Q}{2}-sin^{2}\frac{Q}{2}}

=\dfrac{1+sinQ}{cosQ}

=\dfrac{1}{cosQ}+\dfrac{sinQ}{cosQ}

=secQ+tanQ

=\dfrac{1}{secQ-tanQ}

\to \boxed{\small{\frac{sinQ-cosQ+1}{sinQ+cosQ-1}=\dfrac{1}{secQ-tanQ}}}

\underline{\textsf{Hence, proved.}}

\boxed{\underline{\underline{\textsf{Finding (secQ + tanQ)}}}}

\textsf{We know that,}

sec^{2}Q-tan^{2}Q=1

\to \small{(secQ+tanQ)(secQ-tanQ)=1}

\to secQ+tanQ=\dfrac{1}{secQ-tanQ}

Anonymous: Hard working!!
sukhdevnain590: Use 10based formulas
Swarup1998: okay give me some time :)
SillySam: Fantabulous job ;p
Tomboyish44: Awesom Answer!!
Tomboyish44: Awesome*
Answered by Anonymous
12

Step-by-step explanation:

SinQ - CosQ + 1 / SinQ + CosQ - 1 = 1/SecQ - TanQ

LHS = SinQ/CosQ - CosQ/CosQ + 1/CosQ / SinQ/CosQ + CosQ/CosQ - 1/Cos . ( dividing the whole LHS by CosQ)

= (TanQ + SecQ) - 1 / (TanQ - SecQ) + 1

= {(TanQ + SecQ) - 1} (TanQ - SecQ) / {(TanQ - SecQ) + 1} ( TanQ - SecQ). {Multiplying the numerator and denominator by (TanQ - SecQ)}

= (Tan^2Q - Sec^2Q) - ( TanQ - SecQ) / (TanQ - SecQ + 1) ( TanQ - SecQ). ( Here I have just multiplied numerator wholly)

= -1 - (TanQ - SecQ) / (TanQ - SecQ) (TanQ - SecQ + 1)

= -1/TanQ - SecQ = 1/SecQ - TanQ . { by cancelling (TanQ - SecQ) we get this }

LHS = RHS ( Hence Proved)

Hope it helps!☺

Have a nice day!❤


Swarup1998: you can edit it :)
Swarup1998: It is okay. It is understandable. Good answer. :)
SillySam: Amazing job :)
Similar questions