SINQ-SIN3Q+SIN5Q-SIN7Q/COSQ-COS3Q-COS5Q+COS7Q=COT2Q
Answers
we have to prove that,
(sinQ - sin3Q + sin5Q - sin7Q)/(cosQ - cos3Q - cos5Q + cos7Q) = cot2Q
proof : we know,
sinC + sinD = 2sin(C + D)/2 cos(C - D)/2
cosC - cosD = 2sin(C + D)/2 sin(D - C)/2
sinQ + sin5Q = 2sin(Q + 5Q)/2 cos(5Q - Q)/2
= 2sin3Q cos2Q
sin3Q + sin7Q = 2sin(3Q + 7Q)/2 cos(7Q - 3Q)/2
= 2sin5Q cos2Q
cosQ - cos5Q = 2sin(Q + 5Q)/2 sin(5Q - Q)/2
= 2sin3Q sin2Q
cos7Q - cos3Q = 2sin(7Q + 3Q)/2 sin(3Q - 7Q)/2
= -2sin5Q sin2Q
now LHS = (sinQ - sin3Q + sin5Q - sin7Q)/(cosQ - cos3Q - cos5Q + cos7Q)
= (2sin3Q cos2Q - 2sin5Q cos2Q)/(2sin3Q sin2Q - 2sin5Q sin2Q)
= 2cos2Q(sin3Q - sin5Q)/2sin2Q(sin3Q - sin5Q)
= cos2Q/sin2Q
= cot2Q = RHS
also read similar questions : Solve sinQ+ sin3Q+ sin5Q = 0
https://brainly.in/question/157792
cosQ/1 +sinQ + 1+sinQ/cosQ = 2secQ
https://brainly.in/question/14147609