Math, asked by sabinaquadrisalman, 1 day ago

sinsin6x- sinsin4x=sin2x sin10x

Answers

Answered by Anonymous
0

 \bold{LHS =sin^26x−sin^24x}

=(sin6x+sin4x)(sin6x−sin4x)

 \bold{... [∵a^2 −b^2 =(a+b)(a−b)]}

We know that, sinA+sinB=

2 \sin( \frac{A+B}{2} ) \cos( \frac{A - B}{2} )

∴ LHS =

[2 \sin( \frac{6x + 4x}{2} )  \cos( \frac{6x - 4x}{2} ) ]

[2 \cos( \frac{6x + 4x}{2} )  \sin( \frac{6x - 4x}{2} ) ]

 = [2 \sin( \frac{10x}{2} )  \cos( \frac{2x}{2} ) ]

 = [2 \cos( \frac{10x}{2} )  \sin( \frac{2x}{2} ) ]

=2sin5xcosx×2cos5xsinx

=2sin5xcos5x×2sinxcosx

=sin10x×sin2x [∵sin2θ=2sinθcosθ]

= RHS

Hence proved.

Similar questions