Sinteta/cosecteta+cot teta=2+sin teta/cot teta -cosecteta
Answers
Find more:
7 cosecA -3 cotA =7 prove that 7 cotA - 3 cosecA =3
https://brainly.in/question/8556778#
Answer:
\textbf{To prove:}To prove:
\displaystyle\frac{sin\theta}{cosec\theta+cot\theta}=2+\frac{sin\theta}{cot\theta-cosec\theta}cosecθ+cotθsinθ=2+cotθ−cosecθsinθ
\textbf{L.H.S}L.H.S
=\displaystyle\frac{sin\theta}{cosec\theta+cot\theta}=cosecθ+cotθsinθ
\text{Multiply both numerator and denominator by $cosec\theta-cot\theta$}Multiply both numerator and denominator by cosecθ−cotθ
=\displaystyle\frac{sin\theta}{cosec\theta+cot\theta}{\times}\frac{cosec\theta-cot\theta}{cosec\theta-cot\theta}=cosecθ+cotθsinθ×cosecθ−cotθcosecθ−cotθ
=\displaystyle\frac{sin\theta(cosec\theta-cot\theta)}{cosec^2\theta-cot^2\theta}=cosec2θ−cot2θsinθ(cosecθ−cotθ)
\text{Using, }\;\bf\;cosec^2A-cot^2A=1Using, cosec2A−cot2A=1
=\displaystyle\frac{sin\theta(\frac{1}{sin\theta}-\frac{cos\theta}{sin\theta})}{1}=1sinθ(sinθ1−sinθcosθ)
=1-cos\theta=1−cosθ
\textbf{R.H.S}R.H.S
=\displaystyle2+\frac{sin\theta}{cot\theta-cosec\theta}=2+cotθ−cosecθsinθ
=\displaystyle2-\frac{sin\theta}{cosec\theta-cot\theta}=2−cosecθ−cotθsinθ
\text{Multiply both numerator and denominator by $cosec\theta+cot\theta$}Multiply both numerator and denominator by cosecθ+cotθ
=\displaystyle2-\frac{sin\theta}{cosec\theta-cot\theta}{\times}\frac{cosec\theta+cot\theta}{cosec\theta+cot\theta}=2−cosecθ−cotθsinθ×cosecθ+cotθcosecθ+cotθ
=\displaystyle2-\frac{sin\theta(cosec\theta+cot\theta)}{cosec^2\theta-cot^2\theta}=2−cosec2θ−cot2θsinθ(cosecθ+cotθ)
=\displaystyle2-\frac{sin\theta(\frac{1}{sin\theta}+\frac{cos\theta}{sin\theta})}{1}=2−1sinθ(sinθ1+sinθcosθ)
=2-(1+cos\theta)=2−(1+cosθ)
=1-cos\theta=1−cosθ
\implies\textbf{L.H.S=R.H.S}⟹L.H.S=R.H.S
\text{Hence proved}Hence proved
Find more:
7 cosecA -3 cotA =7 prove that 7 cotA - 3 cosecA =3
https://brainly.in/question/8556778#