Math, asked by priya679, 1 year ago

sintheta -cos theta /sin theta +cos theta +sin theta +cos theta /sin theta -cos theta =2/2sin²theta -1

Answers

Answered by eudora
76

Answer:

Step-by-step explanation:

We have to prove that \frac{(sin\theta-cos\theta)}{(sin\theta+cos\theta)}+\frac{(sin\theta+cos\theta)}{(sin\theta-cos\theta)}=\frac{2}{2sin^{2}\theta-1 }

We take the left hand side of the given equation.\frac{(sin\theta-cos\theta)}{(sin\theta+cos\theta)}+\frac{(sin\theta+cos\theta)}{(sin\theta-cos\theta)}=\frac{(sin\theta-cos\theta)(sin\theta-cos\theta)+(sin\theta+cos\theta)(sin\theta+cos\theta)}{(sin\theta+cos\theta)(sin\theta-cos\theta)}

                                     = \frac{(sin^{2}\theta+cos^{2}\theta-2sin\theta cos\theta)+(sin^{2}\theta+cos^{2}\theta+2sin\theta cos\theta) }{(sin^{2}\theta-cos^{2}\theta)}

                                     = \frac{1+1}{sin^{2}\theta-(1-sin^{2}\theta ) } [SInce sin^{2}\theta + cos^{2}\theta = 1]

                                     = \frac{2}{2sin^{2}\theta-1}

                                     = Left hand side of the equation

Hence proved.

Learn more about the trigonometric equations from https://brainly.in/question/10316730

Answered by kazabhargavaram
22

Answer:

LHS=RHS

Step-by-step explanation:

MARK MY ANSWER AS BRAINLIEST ANSWER PLZ PLZ !!!!!!!!!!!!!!!!

Attachments:
Similar questions