Math, asked by akshat3359, 1 year ago

(sintheta - cosec thetha)
(costheta-sectheta) (tan theta+cot theta) =1​

Answers

Answered by kingofself
0

Answer:

The given is proved,

LHS=RHS

Solution:  

Given Data:

According to the question:

(\csc \theta-\sin \theta)(\sec \theta-\cos \theta)(\tan \theta+\cot \theta)=1

Step 1:

To prove,  

(\csc \theta-\sin \theta)(\sec \theta-\cos \theta)(\tan \theta+\cot \theta)=1

Proof:

Step 2:

LHS =\left(\frac{1}{\sin } \theta-\sin \theta\right)\left(\frac{1}{\cos } \theta-\cos \theta\right)\left(\tan \theta+\frac{1}{\tan } \theta\right)

=\frac{\frac{1-\sin ^{2} \theta}{\sin ^{2} \theta}\left(1-\cos ^{2} \theta\right)}{\tan \theta}

Step 3:

   =\frac{\frac{\cos ^{2} \theta}{\sin \theta}\left(\sin ^{2} \theta\right) \sec ^{2} \theta}{\tan \theta}

     =\cos \theta \sin \theta \frac{\frac{1}{\cos ^{2} \theta}}{\frac{\sin \theta}{\cos \theta}}

=\cos \theta \sin \theta\left(\frac{1}{\cos ^{2} \theta}\right)\left(\frac{\cos \theta}{\sin \theta}\right)

Step 4:

=\cos \theta \sin \theta\left(\cos \frac{\theta}{\sin } \theta \cos ^{2} \theta\right)

=\cos \theta \sin \theta\left(\frac{1}{\sin } \theta \cos \theta\right)

Step 5:

Result:

=\cos \theta \sin \frac{\theta}{\sin } \theta \cos \theta

 =1=RHS

∴ Hence proved

Similar questions