Math, asked by pareekaryan, 7 months ago

sintheta+costheta/sintheta-costheta +sintheta-costheta/sintheta=cos thaeta

Answers

Answered by MaheswariS
0

\underline{\textsf{Given:}}

\mathsf{\dfrac{sin\theta+cos\theta}{sin\theta-cos\theta}+\dfrac{sin\theta-cos\theta}{sin\theta+cos\theta}}

\underline{\textsf{To simplify:}}

\mathsf{\dfrac{sin\theta+cos\theta}{sin\theta-cos\theta}+\dfrac{sin\theta-cos\theta}{sin\theta+cos\theta}}

\underline{\textsf{Solution:}}

\underline{\textsf{Formula used:}}

\boxed{\begin{minipage}{4cm}$\\\mathsf{sin^2A+cos^2A=1}\\\\\mathsf{cos2A=cos^2A-sin^2A}\\$\end{minipage}}

\textsf{Consider,}

\mathsf{\dfrac{sin\theta+cos\theta}{sin\theta-cos\theta}+\dfrac{sin\theta-cos\theta}{sin\theta+cos\theta}}

\mathsf{=\dfrac{(sin\theta+cos\theta)^2+(sin\theta-cos\theta)^2}{(sin\theta-cos\theta)(sin\theta+cos\theta)}}

\mathsf{=\dfrac{sin^2\theta+cos^2\theta+2\,sin\theta\,cos\theta+sin^2\theta+cos^2\theta-2\,sin\theta\,cos\theta}{sin^2\theta-cos^2\theta}}

\mathsf{=\dfrac{1+1}{sin^2\theta-cos^2\theta}}

\mathsf{=\dfrac{2}{-(cos^2\theta-sin^2\theta)}}

\mathsf{=\dfrac{2}{-cos\,2\theta}}

\mathsf{=-2\,sec\,2\theta}

\underline{\textsf{Answer:}}

\textsf{The simplified form of the given expression is}\;\mathsf{-2\,sec2\theta}

Find more:

Prove that 1-sin^2x/1+cotx-cos^2x/1+tanx=sinxcossx

https://brainly.in/question/4927186

Tan(π/4+x)-tan(π/4-x)=2tan 2x

https://brainly.in/question/10999329

Show.

Sec2x + cosec2x=sec2x*cosec2x​

https://brainly.in/question/23579366

Similar questions