Math, asked by Enit2927, 10 months ago

Sintheta/cottheta+cosectheta =2 + sintheta/cottheta-cosectheta

Answers

Answered by Anonymous
3

Answer:

LHS = sinA/(cotA+cosecA)

= sinA/[(cosA/sinA)+(1/sinA)]

= sinA/[(cosA+1)/sinA]

= sin²A/(1+cosA)

= (1-cos²A)/(1+cosA)

/* sin²A = 1 - cos²A */

= [(1+cosA)(1-cosA)]/(1+cosA)

/* a²-b² = (a+b)(a-b) */

= 1 - cosA ----(1)

RHS = 2+ [sinA/(cotA-cosecA)]

= 2+sinA/[(cosA/sinA)-(1/sinA)]

= 2+SinA/[(cosA-1)/sinA]

= 2+ [ sin²A/(cosA-1)]

= 2 - ( sin²A)/(1-cosA)

= 2- [ (1-cos²A)/(1-cosA)]

= 2-[(1+cosA)(1-cosA)/(1-cosA)]

= 2 - ( 1+cosA)

= 2-1-cosA

= 1-cosA ----(2)

Form (1) & (2) , we conclude that,

(1) = (2)

LHS = RHS

••••

Attachments:
Similar questions