Math, asked by A1256, 7 months ago

Sintheta/cottheta+cosectheta =2 + sintheta/cottheta-cosectheta​

Answers

Answered by Anonymous
0

Step-by-step explanation:

ANSWER

We have to prove that

cot+cosecθ

sinθ

=2+

cotθ−cosecθ

sinθ

or,

cotθ+cosecθ

sinθ

cotθ−cosecθ

sinθ

=2

Now,

⇒ LHS =

cotθ+cosecθ

sinθ

cotθ−cosecθ

sinθ

⇒ LHS =

cosecθ+cotθ

sinθ

+

cosecθ−cotθ

sinθ

⇒ LHS = sinθ{

cosecθ+cotθ

1

+

cosecθ−cotθ

1

}

⇒ LHS = $$sin \, \theta\left\{\dfrac{cosec \, \theta \, - \, cot \, \theta \, + \, cosec \, \theta \, + \, cot \, \theta}{cosec^2 \, \theta \, - \, cot^ \, \theta}\right\} \, = \, sin \, \theta \, \left(\dfrac{2 \, cosec \, \theta}{1} \right)$$

⇒ LHS = sinθ(2cosecθ)=2sinθ×

sinθ

1

=2=RHS

⇒ LHS = 2 = RHS

ALTERNANATIVELY,

LHS =

cotθ+cosecθ

sinθ

⇒LHS=sinθ(cosecθ−cotθ) [∵

cosecθ+cotθ

1

=cosecθ−cotθ]

⇒ LHS = sinθ(

sinθ

1

sinθ

cosθ

)=sinθ(

sinθ

1−cosθ

)

⇒ LHS = 1 - cos θ

⇒ = 2 - (1 + cos θ)

⇒ LHS = 2 -

1−cosθ

(1+cosθ)(1−cosθ)

⇒ LHS = 2 -

1−cosθ

(1−cos

2

θ)

⇒ LHS = 2 -

1−cosθ

sin

2

θ

=2−

sinθ

1−cosθ

sinθ

=2−

sinθ

1

sinθ

cosθ

sinθ

⇒ LHS = 2 -

cosecθ−cotθ

sinθ

= RHS

Answered by riya47363h
1

Step-by-step explanation:

Note : Here I am using A instead of theta.

LHS = sinA/(cotA+cosecA)

= sinA/[(cosA/sinA)+(1/sinA)]

= sinA/[(cosA+1)/sinA]

= sin²A/(1+cosA)

= (1-cos²A)/(1+cosA)

/* sin²A = 1 - cos²A */

= [(1+cosA)(1-cosA)]/(1+cosA)

/* a²-b² = (a+b)(a-b) */

= 1 - cosA ----(1)

RHS = 2+ [sinA/(cotA-cosecA)]

= 2+sinA/[(cosA/sinA)-(1/sinA)]

= 2+SinA/[(cosA-1)/sinA]

= 2+ [ sin²A/(cosA-1)]

= 2 - ( sin²A)/(1-cosA)

= 2- [ (1-cos²A)/(1-cosA)]

= 2-[(1+cosA)(1-cosA)/(1-cosA)]

= 2 - ( 1+cosA)

= 2-1-cosA

= 1-cosA ----(2)

Form (1) & (2) , we conclude that,

(1) = (2)

LHS = RHS

••••

Similar questions