Math, asked by sudhanshu6799, 1 year ago

sintheta/root 1-sin^2theta = tan theta prove

Answers

Answered by SillySam
11
HEYA MATE, HERE IS UR ANSWER

\frac {sin theta}{\sqrt{1-sin theta ^2}}

We know the identity sin ^2 theta + cos ^2 theta =1 -------(1)

Therefore

Cos^2 theta =1-sin^2 theta

Putting this value in equation 1 )

\frac{sin theta}{\sqrt{cos^2 theta}}

= sin theta/cos theta

=tan theta

---------\mathbb{Hence\:verified }

\mathbb{Be\: Brainly}

SillySam: my pleasure :) sis
sudhanshu6799: what do u mean by sis
SillySam: sister
SillySam: Sorry bro
SillySam: I read it as sudha anshu sorry
sudhanshu6799: i am a boy
SillySam: I read it as sudha and anshu
SillySam: so I said sis ....btw my pleasure :) brother
sudhanshu6799: you f
sudhanshu6799: thanx
Answered by tanvigupta426
2

Answer:

It is proven that

$\frac{\sin \theta}{\sqrt{\cos ^{2} \theta}}=tan \theta

Step-by-step explanation:

Given :

$\frac{\sin \theta}{\sqrt{\cos ^{2} \theta}}=tan \theta

Step 1

We know the identity

sin ^2 $\theta$ + cos ^2 $\theta$ =1.................(1)

Therefore

Cos^2 $\theta$ =1-sin^2 $\theta$

Step 2

Putting this value in the equation ( 1 )

$\frac{\sin \theta}{\sqrt{1-\sin ^{2} \theta}}$  $=\frac{\sin \theta}{\sqrt{\cos ^{2} \theta}}$

=\frac{\sin \theta}{\cos \theta} \\ &

=\tan \theta \end{aligned}$

Therefore,

$\frac{\sin \theta}{\sqrt{\cos ^{2} \theta}}=tan \theta

#SPJ3

Similar questions