Sintita/1-costita+sintita/1+costita=4 then find the value of tita
Answers
Answered by
1
Step-by-step explanation:
Given:-
[Sin θ/(1-Cos θ) ]+ [Sin θ/(1+Cos θ)] = 4
To find:-
Find the value of θ ?
Solution:-
Given that
[Sin θ/(1-Cos θ) ]+ [Sin θ/(1+Cos θ)] = 4
=> Sin θ [1 / (1-Cos θ)] + [1 / ( 1+ Cos θ)] = 4
=> Sinθ[{(1+Cos θ)+(1-Cosθ)}]/[(1-Cosθ)(1+Cosθ)=4
=>Sinθ [ (1+Cosθ+1-Cos θ)]/[(1)^2-(Cos θ)^2]=4
(Since (a+b)(a-b)=a^2-b^2))
=>Sin θ [(1+1)/(1-Cos^2 θ) = 4
=>Sin θ (2 / (1-Cos^2 θ) = 4
We know that
Sin^2 A + Cos^2 A = 1
=>Sin^2 A = 1 - Cos^2 A
=>Sin θ (2/Sin^2 θ) = 4
=> 2 Sin θ / (Sin θ × Sin θ) = 4
=> 2 / Sin θ = 4
=> 1/ Sin θ = 4/2
=> 1/ Sin θ = 2
=> Sin θ = 1/2
=> Sin θ = Sin 30°
=> θ = 30°
Therefore, θ = 30°
Answer:-
The value of θ for the given problem is 30°
Used formulae:-
- (a+b)(a-b)=a^2-b^2
- Sin^2 A + Cos^2 A = 1
- Sin 30° = 1/2
Similar questions
Science,
2 months ago
Math,
2 months ago
Science,
5 months ago
Environmental Sciences,
5 months ago
Social Sciences,
1 year ago
Science,
1 year ago