Math, asked by kirandhillon, 1 year ago

sinx /(1-cos x)(2-cosx) integration


kirandhillon: i solve this question but last step i dont how to solve

Answers

Answered by sumitsainisingpdetub
16
Please mark this solution as brainilist
Attachments:

kirandhillon: no
sumitsainisingpdetub: i want to be ur friend
kirandhillon: sorry it's not possible.
sumitsainisingpdetub: why
kirandhillon: I am bussy in my study.
sumitsainisingpdetub: how much u got in highschool
kirandhillon: I have no time.
sumitsainisingpdetub: ok
sumitsainisingpdetub: byeeee
kirandhillon: bye
Answered by hukam0685
6

Answer:

\int \frac{sin \: x}{(1 - cos \: x)(2 - cos \: x)} dx  = log\bigg(\bigg | \frac{cos \: x - 1}{cos \: x - 2} \bigg| \bigg)  + c \\  \\  \:

Step-by-step explanation:

 \int \frac{sin \: x}{(1 - cos \: x)(2 - cos \: x)} dx \\  \\

By inspecting one can say we can substitute cos x as t

Let

cos \: x = t \\  \\  - sin \: x \: dx = dt \\  \\ do \: substitution \\  \\ \int \frac{ - dt}{(1 - t)(2 - t)} dx \\  \\  \\

Now,do partial fraction

\frac{ - 1}{(1 - t)(2 - t)}  =  \frac{A}{1 - t}  +  \frac{B}{2 - t}  \\  \\  - 1 = A(2 - t) + B(1 - t) \\  \\  - 1 = 2A + B - At - Bt \\  \\  - 1 = 2A + B+ t( - A - B) \\  \\ compare \: the \: coefficient \\  \\ 2A+ B=  - 1 \\  - A - B = 0 \\  \\ A =  - 1 \\  \\ B = 1 \\  \\

So

 \int\frac{ - 1}{1 - t}  dt+   \int\frac{1}{2 - t}dt  \\  \\or \\  \\  \int\frac{  1}{ t - 1}  dt -    \int\frac{1}{t - 2}dt =  log( |t - 1| )  -  log( |t - 2| )  + c \\ \\   \\ \int\frac{  1}{ t - 1}  dt -    \int\frac{1}{t - 2}dt=   log\bigg( \bigg| \frac{t - 1}{t - 2} \bigg| \bigg)  + c \\  \\

undo substitution

 \int \frac{sin \: x}{(1 - cos \: x)(2 - cos \: x)} dx  = log\bigg(\bigg | \frac{cos \: x - 1}{cos \: x - 2} \bigg| \bigg)  + c \\  \\  \:

Hope it helps you.

Similar questions
Math, 1 year ago