Math, asked by ashishkumarashu2004, 9 months ago

(sinx-2sin^3x)=(2cos^3x-cosx)tanx

Answers

Answered by Anonymous
6

Given

 (\sin x - 2 \sin^{3} x) = \tan x(2 { \cos }^{3} x - \cos x)

To Find:

Prove that LHS is equal to RHS.

Answer:

We will solve LHS and RHS one by one.

Firstly , we will solve LHS.

LHS:

( \sin  x -  {\sin}^{3} x)

Taking sin x as common, we get:

\sin x(1  - 2 {\sin}^{2} x)

We know that,

 {\sin}^{2} \theta +  {\cos}^{2} \theta = 1

Substituting the above value in place of 1 , we get:

\sin  x( {\sin}^{2} x +  {\cos}^{2} x - 2\sin ^{2}  x)

On Simplifying, we get:

\sin x( {\cos}^{2} x -  {\sin}^{2} x)

Now, we will solve RHS.

RHS:

\tan x(2 {\cos}^{3} x - \cos x)

Taking cos x as common, we get:

\tan x \times \cos x(2 {\cos}^{2} x - 1)

We know that,

\tan x =  \frac{\sin x}{\cos x }

Substituting the value of tan x in the equation, we get:

 \frac{\sin x}{\cos x}  \times \cos x(2 {\cos}^{2} x - 1)

We know that,

 {\sin}^{2} x +  {\cos}^{2} x = 1

Substituting the value of 1 , we get:

\sin x( 2{\cos}^{2} x  -  {\sin}^{2} x -  {\cos}^{2} x)

\sin x( {\cos}^{2} x -  {\sin}^{2} x)

LHS = RHS

Hence Proved

Other Trigonometric

Identities:

1) \:  {\cosec}^{2} \theta -  {\cot}^{2} \theta = 1

2) \:  {\sec}^{2} \theta -  {\tan}^{2} \theta = 1

Trigonometric Ratios:

1) \:  \sin\theta =  \frac{1}{ \cosec \theta}  \\ 2) \:  \cos \: \theta \: \:    =  \:  \frac{1}{\sec\theta}  \\ 3) \:  \tan \: \theta \:  =  \:  \frac{1}{\cot \: \theta}  \\ 4) \: \cot \: \theta \:  =   \: \frac{1}{\tan \: \theta}  \\ 5) \: \sec \: \theta \:  =  \:  \frac{1}{\cos \: \theta}  \\ 6) \cosec \theta=   \frac{1}{\sin \: \theta}

Similar questions