Math, asked by buvi67, 1 year ago

sinx=2t/1+t^2,tany=2t/1-t^2 find dy/dx​

Answers

Answered by Anonymous
48

HERE'S YOUR ANSWER IN THE ATTACHMENT

Attachments:
Answered by SushmitaAhluwalia
8

dy/dx = 1

  • Given,

             sin x = \frac{2t}{1+t^{2} }  --------(1)   tan y = \frac{2t}{1-t^{2} }   ---------------(2)

  • Let

           t = tan \alpha\alpha = tan^{-1} t

  • Substituting t in (1) and (2), we get

            sin x = \frac{2tan\alpha }{1+tan^{2}\alpha  }               tan y = \frac{2tan\alpha }{1 - tan^{2}\alpha  }

       ⇒ sin x = sin 2\alpha              ⇒ tan y = tan 2\alpha

       ⇒ x = 2\alpha                        ⇒ y = 2\alpha

  • Differentiating on both sides w.r.t \alpha

         ⇒ \frac{dx}{d\alpha } = 2   -----------(3)   ⇒ \frac{dy}{d\alpha } = 2 ------------------(4)

  • (4)/(3) ⇒ (\frac{dy}{d\alpha } )/(\frac{dx}{d\alpha } ) = \frac{2}{2}

                 ⇒  dy/dx = 1

NOTE: I used alpha in making solution as there is no option for theta.

But you must use theta not alpha.

               

           

Similar questions