Math, asked by janeshwar86, 11 months ago

sinx=3/5,x lies in second quadrant find all other trigonometric ratios​

Answers

Answered by aayushigupta2107
3

Step-by-step explanation:

1 - Sin^2x = Cos ^2x

Cos^2x = 1 - (3/5)^2

Cos^2x = 1 - 9/25

Cos^2x = 16/25

Cos x = - 4/5 {2nd quadrant}

Cosec x = 5/3

Sec x = - 5/4

Tan x = - 3/4

Cot x = - 4/3

Answered by Anonymous
5

\Large{\textbf{\underline{\underline{According\:to\:the\:Question}}}}

\tt{\rightarrow sinx=-\dfrac{3}{5}}

As we know that :-

\tt{\rightarrow cosecx=\dfrac{1}{sinx}}

\tt{\rightarrow cosecx=\dfrac{1}{(3/5)}}

\tt{\rightarrow cosecx=\dfrac{5}{3}}

Also we know that :-

{\boxed{\sf\:{sin^2x+cos^2x=1}}}

Hence,

cos²x = 1 - sin²x

{\boxed{\sf\:{Putting\;the\;values\;:-}}}

\tt{\rightarrow cos^2x=1-(\dfrac{3}{5})^2}

\tt{\rightarrow cos^2x=1-\dfrac{9}{25}}

\tt{\rightarrow cos^2x=\dfrac{16}{25}}

Therefore,

\tt{\rightarrow cosx=\pm\dfrac{4}{5}}

Here we get,

x lies in second quadrant.

Hence,

Value of cosx will be negative.

Now,

\tt{\rightarrow cosx=-\dfrac{4}{5}}

\tt{\rightarrow secx=\dfrac{1}{cosx}}

\tt{\rightarrow secx=\dfrac{1}{(-4/5)}}

\tt{\rightarrow secx=-\dfrac{5}{4}}

Now,

\tt{\rightarrow tanx=\dfrac{sinx}{cosx}}

\tt{\rightarrow tanx=\dfrac{(3/5)}{-(4/5)}}

\tt{\rightarrow tanx=-\dfrac{3}{4}}

Now,

\tt{\rightarrow cotx=\dfrac{1}{tanx}}

\tt{\rightarrow cotx=-\dfrac{4}{3}}

Similar questions