Math, asked by ZoashKanishk, 1 year ago

sinx=3/5,x lies in second quadrant,then find five trigonometry functions

Answers

Answered by kuralanbuvanathi
57
sin x = 3/5

sin^2 x + cos^2 x = 1
(3/5)^2 + cos^2 x = 1
cos^2 x = 1 - 9/25
cos^2 x = 16/25
cos x = + or - 4/5
But x lies in the second quadrant, so
cos x = -4/5

cosec x = 1 / sin x
cosec x = 5/3

sec x = - 5/4

tan x = -3/4. and cot x =-4/3

Answered by vinod04jangid
0

Answer:

cosx=-\frac{4}{5}, secx=-\frac{5}{4}, tanx=-\frac{3}{4}, cosecx=\frac{5}{3}, cotx=- \frac{4}{3}

Step-by-step explanation:

Given: sinx=\frac{3}{5} & x lies in second quadrant.

To find all trigonometry functions.

We know that in second quadrant sine & cosine functions are positive rest are negative.

sinx=\frac{P}{H}

Using Pythagoras theorem: H^{2}=P^{2}+B^{2}.

Here, P=3,H=5 substituting we get, B=4.

So, all trigonometry functions are given as follows:

cosx=\frac{B}{H} =-\frac{4}{5}      

tanx=\frac{P}{B}=-\frac{3}{4} \\cosecx=\frac{H}{P}=\frac{5}{3}\\ secx=\frac{H}{B}=-\frac{5}{4}\\ cotx=\frac{B}{P}=-\frac{4}{3}

#SPJ2

Similar questions