Math, asked by yashnetam05, 1 year ago

Sinx-3sin2x+sin3x=cosx-3cos2x+cos3x

Answers

Answered by spiderman2019
2

Answer:

x = π/8 + n*π/2 (in radians) (OR) x = 22.5° + n * 90°  (in degrees)

Step-by-step explanation:

sin x - 3 sin 2x + sin 3x = cos x - 3 cos 2x + cos 3x

sin (2x-x) - 3 sin 2x + sin (2x + x) = cos (2x-x) - 3 cos 2x + cos (2x+x)

sin(2x)cos(x) - sin(x)cos(2x) - 3 sin(2x) + sin(2x)cos(x)+sin(x)cos(2x)  

      = cos(2x)cos(x) + sin(2x)sin(x)  –  3cos(2x) + cos(2x)cos(x) - sin(2x)sin(x)

2 sin(2x)cos(x) - 3 sin(2x) = 2 cos(2x)cos(x) - 3 cos(2x)

sin(2x) * (2 cos(x) - 3) = cos(2x) * (2 cos(x) - 3)

sin(2x) * (2 cos(x) - 3) - cos(2x) * (2 cos(x) - 3) = 0

(2 cos(x) - 3)  (sin(2x)  - cos(2x)) = 0

//Use zero factor property to solve for x individually:

i.e. 2 cos(x) - 3 = 0                               sin(2x) - cos(2x) = 0

2 cosx - 3 = 0                                      sin 2x = cos 2

cos x = 3/2                                          Tan 2x = 1

==> No solution here                         2x = Tan ⁻¹ (1)

                                                           2x = π/4 + n*π where n is any integer

                                                           x = π/8 + n*π/2

                                                            i.e. in degrees  x = 22.5° + n * 90°  

Similar questions