Sinx cos cube x - cosx sin cube x
Answers
Answered by
2
Step-by-step explanation:
sin^3x+cos^3x=1-3sinx cosx
(sinx+cosx) (sin^2x+cos^2x-sinx cosx) = 1-3sinx cosx
(sinx+cosx) (1-sinx cosx) = 1-3sinx cosx multiply X 2
(sinx+cosx) (2-2sinx cosx)= 2-6sinx cosx
(sinx+cosx) (2-sin2x) = 2 - 3sin2x now square both sides
(sin^2x + cos^2x + 2sinx cosx) (2-sin2x)^2 =(2- 3sin2x)^2
(1+sin2x)(4-4sin2x + sin^2[2x])=4 -12sin2x +9sin^2[2x]
4-4sin[2x]+ sin^2[2x]+ 4sin[2x]- 4sin^2[2x]+sin^3[2x] =4-12sin[2x] + 9sin^2[2x]
sin^3[2x] -12 sin^2[2x] +20 sin[2x]=0
sin2x(sin^2[2x]-12sin[2x] +20)=0
sin2x(sin2x - 10)(sin2x -2)=0
sin2x=0
sin2x=10 (not possible)>1)
or sin2x=2 (not possible>1)
so the only possible solution
is sin2x=0 --->2x= 0 or π
so x=0 or π/2
Similar questions