(sinx+cosecx)^2+(cosx+secx)^2=tan^2x+cot^2x+7
Answers
Answered by
0
Answer:
Step by step explanation :
Let us take the LHS and find and let the RHS be as it is
(Sinx+cosecx)^2+(cosx+secx)^2
We know the equation (a+b)^2=a^2+b^2+2ab;put the equation to both of the above ;
=(Sin^2x + cosec^2x +2sinx cosecx) +(cos^2x +sec^2x+2cosxsecx)
=(sin^2x+cosec^2x+2sinx 1/sinx) +(cos^2x+sec^2x+2cosx 1/cosx)
= (sin^2x + 1+cot^2x +2) + (cos^2x+1+tan^2x+2)
= (sin^2x +cot^2x+3)+(cos^2x+tan^2x+3)
=sin^2x+cos^2x +cot^2x +tan^2x +6
=1 + cot^2x +tan^2x +6
=tan^2x +cot^2x +7
Hence the LHS =RHS
Similar questions