sinx+cosx=1+sinxcosx solve for x
Answers
Answered by
16
by squaring both sides we have
(sinx)^2+(cosx)^2+2 cosxsinx = 1+(sinx)^2(cosx)^2+2cosxsinx
1+2cosxsinx=1+(sinx)^2(cosx)^2+2cosxsinx
(sinx)^2(cosx)^2=0
sinx cosx=0
x=0,90°
(sinx)^2+(cosx)^2+2 cosxsinx = 1+(sinx)^2(cosx)^2+2cosxsinx
1+2cosxsinx=1+(sinx)^2(cosx)^2+2cosxsinx
(sinx)^2(cosx)^2=0
sinx cosx=0
x=0,90°
Answered by
11
Answer: 0° or 90°
Step-by-step explanation:
Given that :
Squaring both side we get
Therefore either or
i.e. either or
Hence, the value of x is 0° or 90°
Similar questions