Sinx+iCosx/1+i=0 solve it
Answers
Answered by
0
Answer:
Using the de Moivre's identity which states
eix=cosx+isinx we have
1+eix1+e−ix=eix1+e−ix1+e−ix=eix
NOTE
eix(1+e−ix)=(cosx+isinx)(1+cosx−isinx)=cosx+cos2x+isinx+sin2x=1+cosx+isinx
or
1+cosx+isinx=(cosx+isinx)(1+cosx−isinx)
Similar questions