Math, asked by Anurag9467, 1 year ago

sinx/sin(x/8)=?

options:
a) 0
b)1
c)8 cos x/8 cos x/4 cos x/2
d)8 sin x/8 sin x/4 sin x/2

Answers

Answered by FrangMung
49
the correct answer to this question would be option b
Attachments:

Anurag9467: please explain in detail...
Anurag9467: second step
FrangMung: sin2x=2sinx.cosx .. if you know thia formula ..its all done ..its just that i have used this formula 3times
Answered by tardymanchester
50

Answer:

Option C - 8 cos x/8 cos x/4 cos x/2

Step-by-step explanation:

Given : \frac{sinx}{sin (x/8)}

To find : the given statement is equal to

Solution : Using property of trigonometry

Sin2x=2 sinx cosx

Now,solve the given statement

\frac{sinx}{sin (x/8)}

=\frac{2 sin(x/2) cos(x/2)}{sin (x/8)}  ,  ∵ [sinx=2 sin(x/2) cos(x/2)]

=\frac{2 cos(x/2) 2 sin(x/4) cos(x/4)}{sin (x/8)}   ,  ∵[sin(x/2)=2 sin(x/4) cos(x/4)]

Further,

=\frac{4 cos(x/2) cos(x/4) 2 sin(x/8) cos(x/8)}{sin (x/8)} ,    ∵[sin(x/4)=2 sin(x/8) cos(x/8)]]

sin(x/8) cancel from numerator and denominator

=8 cos(x/2) cos(x/4) cos(x/8)  

Therefore, Option C is correct.


Similar questions