Math, asked by sandhumanveer6040, 11 months ago

Sinx+sin2 x=1, then find the value of cos12+3cos10x+3cos8 x+cos6 x+2cos4 x+cos2 x-2

Answers

Answered by MaheswariS
0

\textbf{Given:}

sinx+sin^2x=1

\textbf{To find:}

\text{The value of $cos^{12}x+3\,cos^{10}x+3\,cos^{8}x+cos^{6}x+2\,cos^{4}x+cos^{2}x-2$}

\textbf{Solution:}

\text{Consider,}

sinx+sin^2x=1

\implies\,sinx=1-sin^2x

\implies\,sinx=cos^2x

\text{Squaring on bothsides, we get}

sin^2x=cos^4x

1-cos^2x=cos^4x

1=cos^4x+cos^2x........(1)

\text{Raising bothsides to the power 3, we get}

1^3=(cos^4x+cos^2x)^3

\text{Using the identity,}

\boxed{(a+b)^3=a^3+b^3+3a^2b+3ab^2}

1=cos^{12}x+cos^{6}x+3\,cos^{10x}+3\,cos^{8}x.......(2)

\text{Now,}

cos^{12}x+3\,cos^{10}x+3\,cos^{8}x+cos^{6}x+2\,cos^{4}x+cos^{2}x-2

=(cos^{12}x+3\,cos^{10}x+3\,cos^{8}x+cos^{6}x)+2\,cos^{4}x+cos^{2}x-2

\text{Using (2), we get}

=(1)+2\,cos^{4}x+cos^{2}x-2

=1+2(cos^{4}x-1)+cos^{2}x

\text{Using (1), we get}

=1+2(-cos^{2}x)+cos^{2}x

=1-2cos^{2}x+cos^{2}x

=1-cos^{2}x

=sin^2x

\textbf{Answer:}

\boxed{\bf\,cos^{12}x+3\,cos^{10}x+3\,cos^{8}x+cos^{6}x+2\,cos^{4}x+cos^{2}x-2=sin^2x}

Similar questions