English, asked by spkumaresan63, 9 months ago

sinx+sin2x+sin3x+sin4x=0​

Answers

Answered by narapogusudhakar777
0

Explanation:

please follow me

Here's the answer dear

In this way, using the sum-to-product formula for sinus and cosine:

sin

α

+

sin

β

=

2

sin

(

α

+

β

2

)

cos

(

α

β

2

)

cos

α

+

cos

β

=

2

cos

(

α

+

β

2

)

cos

(

α

β

2

)

.

So:

(

sin

4

x

+

sin

x

)

+

(

sin

3

x

+

sin

2

x

)

=

0

2

sin

(

4

x

+

x

2

)

cos

(

4

x

x

2

)

+

+

2

sin

(

3

x

+

2

x

2

)

cos

(

3

x

2

x

2

)

=

0

2

sin

(

5

2

x

)

cos

(

3

2

x

)

+

2

sin

(

5

2

x

)

cos

(

1

2

x

)

=

0

2

sin

(

5

2

x

)

[

cos

(

3

2

x

)

+

cos

(

1

2

x

)

]

=

0

2

sin

(

5

2

x

)

2

cos

(

3

2

x

+

1

2

x

2

)

cos

(

3

2

x

1

2

x

2

)

=

0

4

sin

(

5

2

x

)

cos

x

cos

(

x

2

)

=

0

.

Then:

sin

(

5

2

x

)

=

0

5

2

x

=

k

π

x

=

2

5

k

π

,

cos

x

=

0

x

=

π

2

+

k

π

,

Answered by baladesigns2007
1

Answer:

sinx + sin2x + sin3x +sin4x = 0​

Taking sin common:-

sin( x + 2x + 3x + 4x ) = 0

sin 10x = 0

As sin 0° = 0

sin 10x = sin 0°

10x = 0     {As sin and sin get cancelled out}

x = 0/10

x = 0

Explanation:

Hope it helps you :)

Similar questions