Math, asked by ashutoshkumarspe0kb6, 11 months ago

sinx.sin3x=1/2 then general solution of x=?​

Answers

Answered by warylucknow
8

Answer:

The general solution of x is x=[\frac{(2n+1)\pi }{4},  \frac{(3n+1)\pi }{6}]

Step-by-step explanation:

The trigonometric equation is: sinx\times sin 3x = \frac{1}{2}

The expansion of sin 3x is:

sin3x=3sinx-4sin^{3}x

Solve as follows:

sinx\times sin 3x = \frac{1}{2}\\sinx(3sinx-4sin^{3}x)= \frac{1}{2}\\8sin^{4}x-6sin^{2}x+1=0

The resultant equation is a quadratic equation. Solve as follows:

8sin^{4}x-6sin^{2}x+1=0\\8sin^{4}x-4sin^{2}x-2sin^{2}x+1=0\\4sin^{2}x(2sin^{2}x-1)-1(2sin^{2}x-1)=0\\(2sin^{2}x-1)(4sin^{2}x-1)=0\\sin^{2}x=\frac{1}{2}\ or\ \frac{1}{4}\\  sinx=\pm\frac{1}{\sqrt{2} }\ or\  \pm\frac{1}{2}

For sinx=\pm\frac{1}{\sqrt{2}} the solution of x is:

x=\frac{n\pi }{2}+\frac{\pi }{4} \\=\frac{(2n+1)\pi }{4}

For sinx=\pm\frac{1}{2} the solution of x is:

x=\frac{n\pi }{2}+\frac{\pi }{6} \\=\frac{(3n+1)\pi }{6}

Similar questions