sinx + sin3x +sin5x=0 give me general solution plzz
Answers
Answered by
1
Answer:
- sinx +sin3x+sin5x=0
- added L.H.S
- Sin9x=0
- 1/cosec9x =0
- 1/cosecx=0*9
- 1/cosecx=0
- sinx=0
Answered by
2
Step-by-step explanation:
sinx+sin3x+sin5x=0
⇒(sin5x+sinx)+sin3x=0
⇒2sin3xcos2x+sin3x=0
⇒sin3x(2cos2x+1)=0
sin3x=0 or 2cos2x+1=0
sin3x=0 or, cos2x=−
2
1
Now, sin3x=0⟹3x=nπ⟹x=
3
nπ
,n∈Z
And, cos2x=−
2
1
cos2x=cos
3
2π
2x=2mπ±
3
2π
,m∈Z
x=mπ±
3
π
,m∈Z
Hence, the general solution of the given equation is :
x=
3
nπ
or, x=mπ±
3
π
, where m,n∈Z
Similar questions