Math, asked by koppuravuri823, 8 months ago

sinx+siny=a;cosx+coy=b then tan(x+y÷2)=?;sin(x-y÷2)=?​

Answers

Answered by rajeevr06
0

Answer:

i)

 \frac{sinx + siny}{cosx + cosy}  =  \frac{a}{b}

 \frac{2 \sin( \frac{x + y}{2} )  \cos( \frac{x - y}{2} ) }{2 \cos( \frac{x + y}{2} ) \cos( \frac{x - y}{2} )  }  =  \frac{a}{b}

 \tan( \frac{x + y}{2} )  =  \frac{a}{b}

ii)

(sinx + siny) {}^{2}  + (cosx + cosy) {}^{2}  =  {a}^{2}  +  {b}^{2}

2 + 2(cosx \: cosy + sinx \: siny) =  {a}^{2}  +  {b}^{2}

2 \cos(x - y)  =  {a}^{2}  +  {b}^{2}  - 2

 \cos(x - y)  =  \frac{1}{2} ( {a}^{2}  +  {b}^{2}  - 2)

1 - 2 {sin}^{2} ( \frac{x - y}{2} ) =  \frac{ {a}^{2}  +  {b}^{2} - 2 }{2}

2 {sin}^{2} ( \frac{x - y}{2} ) = 1 -  \frac{ {a}^{2} +  {b}^{2} - 2  }{2}  = \frac{4 -  {a}^{2}  -  {b}^{2} }{2}

 {sin}^{2} ( \frac{x - y}{2} ) = \frac{4 -  {a}^{2}  -  {b}^{2} }{4}

 \sin( \frac{x - y}{2} )  =  \frac{1}{2}  \sqrt{4 -  {a}^{2}  -  {b}^{2} }

Similar questions