Math, asked by potato41, 1 year ago

sinx-siny divided by x-y in limits​

Attachments:

Answers

Answered by a1p1
8
if you have a confusion then write in comment
Attachments:
Answered by AneesKakar
1

The value of the limit is equal to cos(y).

Given:

\lim_{x\to y} \frac{sinx-siny}{x-y}

To Find:

The value of the limit:   \lim_{x\to y} \frac{sinx-siny}{x-y}

Solution:

→ We would evaluate the limit by simplifying it step-by-step:

  • Using the formula:  sinA-sinB=2cos(\frac{A+B}{2}) sin(\frac{A-B}{2} )

We get:

                       Limit=\lim_{x\to y} \frac{1}{x-y}[ 2cos(\frac{x+y}{2} )sin(\frac{x-y}{2} )]\\\\

                                  = \lim_{x \to y}  \frac{2}{2(x-y)}[ 2cos(\frac{x+y}{2} )sin(\frac{x-y}{2} )]\\\\=\lim_{x \to y}  \frac{1}{(\frac{x-y}{2}) }[ cos(\frac{x+y}{2} )sin(\frac{x-y}{2} )]

                                  =\lim_{x \to y} [ \frac{sin(\frac{x-y}{2} )}{\frac{x-y}{2} }]\lim_{x \to y} [ cos(\frac{x+y}{2} )]\\\\=\lim_{(x-y) \to 0} [\frac{sin(\frac{x-y}{2} )}{\frac{x-y}{2} }]\lim_{x \to y} [ cos(\frac{x+y}{2} )]\\\\

Assume:   \frac{(x-y)}{2} =t   because   {(x-y)  \to 0}

Therefore by Using the formula:  \lim_{t \to 0} \frac{sint}{t}=1

                            \therefore Limit=(1)(cos\frac{2y}{2} )    

                            \therefore Limit=cosy

Therefore the value of the limit is equal to cos(y).

#SPJ2

Similar questions