sinx+siny+sinz+sinw=4 then sin^2020y+cos^2021z+cos2020w=
Answers
Answered by
2
Given : sin x + sin y + sin z + sin w = 4
To find : The value of sin²⁰²⁰y + cos²⁰²¹z + cos²⁰²⁰w
solution : It is very tricky question. you know values of sine and cosine always lie between-1 to 1.
i.e., -1 ≤ sinΦ ≤ 1
here it is given that
sin x + sin y + sin z + sin w = 4
it is possible only if sin x , sin y , sin z and sin w have maximum of their value.
i.e., sin x = sin y = sin z = sin w = 1
it means, x = 90° , y = 90° , z = 90° and w = 90°
now you can easily find the value of sin²⁰²⁰y + cos²⁰²¹z + cos²⁰²⁰w
= (1)²⁰²⁰ + (0)²⁰²¹ + (0)²⁰²⁰
= 1 + 0 + 0 = 1
Therefore the value of sin²⁰²⁰y + cos²⁰²¹z + cos²⁰²⁰w = 1
Similar questions