Math, asked by may03, 11 months ago

Sinx. Tanx/2+2cosx=2/1-tan^2x/2​

Answers

Answered by pulakmath007
10

\displaystyle\huge\red{\underline{\underline{Solution}}}

CORRECT QUESTION

TO PROVE :

 \displaystyle \sf{ \sin x  \:. \tan  \frac{x}{2}  + 2 \cos x =  \frac{2}{1 +  { \tan}^{2}  \frac{x}{2} }   \: }

FORMULA TO BE IMPLEMENTED

\displaystyle \sf{  1. \:  \:  \sin x =  \frac{2 \: \tan  \frac{x}{2}  }{1 +  { \tan}^{2}  \frac{x}{2} }}

 \displaystyle \sf{ 2.    \:  \:   \cos x =   \frac{ 1  -   { \tan}^{2}  \frac{x}{2}}{1 +  { \tan}^{2}  \frac{x}{2}}     \: }

PROOF

LHS

  = \displaystyle \sf{ \sin x  \:. \tan  \frac{x}{2}  + 2 \cos x \: }

 =  \displaystyle \sf{   \frac{2 \: \tan  \frac{x}{2}  }{1 +  { \tan}^{2}  \frac{x}{2} } \: .\tan  \frac{x}{2}  + 2  \times  \frac{ 1  -   { \tan}^{2}  \frac{x}{2}}{1 +  { \tan}^{2}  \frac{x}{2}}     \: }

 =  \displaystyle \sf{   \frac{2 \: {\tan}^{2}  \frac{x}{2}  }{1 +  { \tan}^{2}  \frac{x}{2} } \:   + \frac{ 2  -  2 { \tan}^{2}  \frac{x}{2}}{1 +  { \tan}^{2}  \frac{x}{2}}     \: }

 =  \displaystyle \sf{   \frac{2 \: {\tan}^{2}  \frac{x}{2}   + 2  -  2 { \tan}^{2}  \frac{x}{2} \: }{1 +  { \tan}^{2}  \frac{x}{2} } \:     \: }

 =  \displaystyle \sf{   \frac{2  }{1 +  { \tan}^{2}  \frac{x}{2} } \:     \: }

= RHS

Hence proved

━━━━━━━━━━━━━━━━

LEARN MORE FROM BRAINLY

Find the value of cot (-3155°)

https://brainly.in/question/6963315

Answered by rudrasinhingale
0

Answer:

hdddfxydddfdydhduujgj. djsjyryKu

Similar questions