Math, asked by Ankit8925, 1 year ago

sinx². cosx integrat this question​

Answers

Answered by Anonymous
16

AnswEr :

We have to integrate sin²x cos x with respect to x

Now,

\displaystyle \: \sf \: l  =  \int \:  ({sin}^{2} x.cos \: x)dx

Let u = sin x

Differentiating both sides,

 \longrightarrow \sf \: du = cos \: x.dx \\  \\  \longrightarrow \:  \boxed{ \sf \: dx =  \frac{du}{cos \: x} }

Thus,

 \dashrightarrow \displaystyle \:  \sf \:l =   \int {u}^{2}  \cancel{cos \: x}. \dfrac{du}{ \cancel{cos \: x}}  \\   \\  \dashrightarrow \:  \sf \: l =   \dfrac{ 1}{3} {u}^{3}   + c \\  \\  \dashrightarrow \:  \boxed{ \boxed{ \sf \: l =  \dfrac{1}{3}   {sin}^{3} x + c}}

Similar questions