Math, asked by kcraarck, 6 months ago

sinxsinydx + cosxcosydy = 0

Answers

Answered by pulakmath007
29

SOLUTION :

TO SOLVE

 \sf{  \sin x \sin y \: dx +  \cos x \cos y \: dy\: = 0  }

EVALUATION

 \sf{  \sin x \sin y \: dx +  \cos x \cos y \: dy\: = 0  }

 \implies \sf{  \sin x \sin y \: dx  =  -  \cos x \cos y \: dy\:  }

Dividing both sides by cos x sin y we get

 \sf{  \tan x \: dx  =  -  \cot y \: dy\:  }

On integration we get

  \displaystyle\sf{  \int \tan x \: dx  =  -   \int\cot y \: dy\:  }

 \implies \sf{  \ln | \sec x \: | =  -  \ln | \sin y|  +  \ln c \: }

Where ln c is integration constant

 \implies \sf{  \ln | \sec x \: |  +   \ln | \sin y|  =  \ln c \: }

 \implies \sf{  \ln | \sec x \:  . \sin y|  =  \ln c \: }

 \implies \sf{   | \sec x \:  .  \sin y|  =   c \: }

RESULT

Hence the required solution is

 \boxed{ \sf{    \:  \: | \sec x \:  .  \sin y|  =   c \: } \:  \: }

━━━━━━━━━━━━━━━━

LEARN MORE FROM BRAINLY

Solve the differential equation

(cosx.cosy - cotx) dx - (sinx.siny) dy=0

https://brainly.in/question/23945760

Answered by dmitro060605
0

Answer:

sinxsinydx + cosxcosydy = 0

Similar questions