Math, asked by abha1425, 1 year ago

Sinxy+cosxy=1 show that dy/dx=-y/x

Answers

Answered by anu24239
11

\huge\underline\mathfrak\red{Answer}

 \sin(x.y) +  \cos(x.y) = 1 \\  \\  \sin(x.y)  = 1 -  \cos(x.y )  \\  \\ take \: square \: of \: both \: side \\  \\  {sin}^{2} (x.y) = 1 +  {cos}^{2} (x.y) - 2 \cos(x.y)  \\  \\ convert \: whole \: equation \:  in \:  \cos(x.y)  \\  \\ 1 -  {cos}^{2} (x.y) = 1 +  {cos}^{2} (x.y) - 2 \cos(x.y)  \\  \\ 2 {cos}^{2} (x.y) - 2 \cos(x.y)  = 0 \\  \\2  \cos(x.y) ( \cos(x.y)  - 1) = 0 \\  \\ from \: this \: we \: get \\  \\ 2 \cos(x.y)  = 0 \\  \\  \cos(x.y)  = 0 \\  \\  \cos(x.y)  =  \cos( \frac{\pi}{2} )  \\  \\ x.y =  \frac{\pi}{2}  \\  \\  \frac{d(x.y)}{dx}  =  \frac{d( \frac{\pi}{2} )}{dx}  \\  \\ x. \frac{dy}{dx}  + y. \frac{dx}{dx}  = 0 \\  \\ x. \frac{dy}{dx}  =  - y \\  \\  \frac{dy}{dx}  =  \frac{ - y}{x}

Similar questions