Math, asked by pradeepv9924, 1 month ago

Sir pls tell me what is the range of function x+1/x

Answers

Answered by mathdude500
3

\large\underline{\sf{Solution-}}

Given function is

\rm :\longmapsto\:f(x) = x + \dfrac{1}{x}

Let assume that,

\rm :\longmapsto\:y = f(x) = x + \dfrac{1}{x}

\rm :\longmapsto\:y = x + \dfrac{1}{x}

\rm :\longmapsto\:y = \dfrac{ {x}^{2}  + 1}{x}

\rm :\longmapsto\: {x}^{2} + 1 = xy

\rm :\longmapsto\: {x}^{2} + 1 - xy = 0

\rm :\longmapsto\: {x}^{2} - xy + 1 = 0

Its a quadratic equation, so roots of this equation is evaluated by using Quadratic formula, given as

\red{ \boxed{ \sf{ \:x =  \frac{ - b \:  \pm \:  \sqrt{ {b}^{2}  - 4ac} }{2a}}}}

Here,

\red{\rm :\longmapsto\:a = 1 \:  \:  \:  \: } \\ \red{\rm :\longmapsto\:b =  - y} \\ \red{\rm :\longmapsto\:c = 1 \:  \:  \:  \: }

On substituting the values, we get

\rm :\longmapsto\:x \:  =  \: \dfrac{y \:  \pm \:  \sqrt{ {y}^{2}  - 4 \times 1 \times 1} }{2 \times 1}

\rm :\longmapsto\:x \:  =  \: \dfrac{y \:  \pm \:  \sqrt{ {y}^{2}  - 4} }{2}

Now, for x to be real,

\rm :\longmapsto\: {y}^{2} - 4 \geqslant 0

\rm :\longmapsto\: {y}^{2} -  {2}^{2}  \geqslant 0

\rm :\longmapsto\:(y - 2)(y + 2) \geqslant 0

\bf\implies \:y \leqslant  - 2 \:  \: or \:  \: y \geqslant 2

\bf\implies \:y \:  \in \: ( -  \infty , \:  -  \: 2\bigg] \:  \cup \: \bigg[2, \:  \infty )

Additional Information :-

If a and b are two real numbers such that a < b, then

\red{ \boxed{ \sf{ \:(x - a)(x - b) &lt; 0 \:  \:  \implies \: a &lt; x &lt; b}}}

\blue{ \boxed{ \sf{ \:(x - a)(x - b)  \leqslant  0 \:  \:  \implies \: a  \leqslant  x  \leqslant  b}}}

\green{ \boxed{ \sf{ \:(x - a)(x - b)  \geqslant  0 \:  \:  \implies \: x  \leqslant   a \:  \: or \:  \: x  \geqslant  b}}}

\green{ \boxed{ \sf{ \:(x - a)(x - b)   &gt;   0 \:  \:  \implies \: x   &lt; a \:  \: or \:  \: x   &gt; b}}}

Similar questions