Six measurements were made of the time in seconds for 20 oscillations of a mass hung from a spiral spring as follows: 20.1, 20.2, 20.3, 20.1, 20.0, 20.2.The standard error is
Answers
Answer:s=σ/sqrt(n)=0.4/sqrt(6)=0.16s=σ/sqrt(n)=0.4/sqrt(6)=0.16
Explanation:
The mean value:
T=(20.1+20.2+20.3+20.1+20.0+20.2)/6=20.2T=(20.1+20.2+20.3+20.1+20.0+20.2)/6=20.2
To calculate the standard error, first calculate the squared deviations of each measurement from the mean:
(20.1-20.2)^2=0.01
(20.2-20.2)^2=0
(20.3-20.2)^2=0.01
(20.1-20.2)^2=0.01
(20.0-20.2)^2=0.04
(20.2-20.2)^2=0
The standard deviation:
σ=sqrt[(0.01+0+0.01+0.01+0.04+0)/6]=0.4.σ=sqrt[(0.01+0+0.01+0.01+0.04+0)/6]=0.4.
The standard error:
s=σ/sqrt(n)=0.4/sqrt(6)=0.16s=σ/sqrt(n)=0.4/sqrt(6)=0.16The mean value:
T=(20.1+20.2+20.3+20.1+20.0+20.2)/6=20.2T=(20.1+20.2+20.3+20.1+20.0+20.2)/6=20.2
To calculate the standard error, first calculate the squared deviations of each measurement from the mean:
(20.1-20.2)^2=0.01
(20.2-20.2)^2=0
(20.3-20.2)^2=0.01
(20.1-20.2)^2=0.01
(20.0-20.2)^2=0.04
(20.2-20.2)^2=0
The standard deviation:
σ=sqrt[(0.01+0+0.01+0.01+0.04+0)/6]=0.4.σ=sqrt[(0.01+0+0.01+0.01+0.04+0)/6]=0.4.
The standard error:
s=σ/sqrt(n)=0.4/sqrt(6)=0.16s=σ/sqrt(n)=0.4/sqrt(6)=0.16
Answer:
Approx = 0.05 = 5×10⁻²
Explanation:
Mean = (20.1 + 20.2 + 20.3 + 20.1 + 20.0 + 20.2) ÷ 6
= 120.9 ÷ 6
= 20.15
Standard Deviation(SD) = √[ ∑(X − μ)² / N]
i.e √1/(6 - 1) (20.1 - 20.1)² + (20.1 - 20.3)² + (20.1 - 20.3)²
= √1/5(0.0001 + 0.04 + 0.04)
= √1/5(0.0801)
= √0.01602
= 0.1266
SD = 0.1266
Standard Error = SD/√(n)
Where (n) = number of samples = 6
Standard Error = SD/√6
Standard Error = 0.1266/√6
Standard Error = 0.05168 ≅ 5.2×10⁻²