Physics, asked by harshit626125, 10 months ago

Slant height and radius of a cone is 42m and 21m respectively then Calculate the total surface area and curved surface area.​

Answers

Answered by Anonymous
95

\large{\red{\bold{\underline{Given:}}}}

 \sf \: (i) \: Slant \: height \: of \: the \: cone (l) = 42m \\  \\  \sf \: (ii) \: Radius \: of \: its \: base(r) = 21m

\large{\green{\bold{\underline{To \: Find:}}}}

 \sf \: (i) \: Total \: surface \: area \: of \: cone \\  \\  \sf \: (ii) \: Curved \: surface \: area \: of \: cone

\large{\blue{\bold{\underline{Formula \: Used:}}}}

 \sf \: Total  \: surface \:  area = \pi rl + \pi {r}^{2} \\  \\  \sf \: Curved \:  surface \:  area = \pi rl

\large{\red{\bold{\underline{Solution:}}}}

 \sf \: Let's \: consider \: total \: surface \: area \: as \: T.S.A. \\ \sf \: And \: curved \: surface \: area \: as \: C.S.A.

\large{\pink{\bold{\underline{Then:}}}}

 \sf \:  \longrightarrow \: T.S.A = \pi r(r + l) \\  \\  \longrightarrow \: \sf \: T.S.A =  \frac{22}{7}  \times 21(21 + 42) \\  \\  \longrightarrow \: \sf \: T.S.A =  \frac{22}{7}  \times 21(63) \\  \\  \longrightarrow \: \sf \: T.S.A =  \frac{22}{\cancel7}  \times \cancel21 (63) \\  \\ \longrightarrow \: \sf \:T.S.A = 22 \times 3 \times 63 \\  \\ \longrightarrow \: \sf \:T.S.A = 4158 \:  {m}^{2}

\large{\green{\bold{\underline{And:}}}}

 \sf  \longrightarrow \: \sf \: C.S.A = \pi rl \\  \\ \longrightarrow \: \sf \: C.S.A =  \frac{22}{7} \times 21 \times 42 \\  \\ \longrightarrow \: \sf \: C.S.A =  \frac{22}{\cancel7} \times \cancel21 \times 42 \\  \\ \longrightarrow \: \sf \: C.S.A = 22 \times 3 \times 42 \\  \\ \longrightarrow \: \sf \: C.S.A = 2772 \:  {m}^{2}

\large{\red{\bold{\underline{Therefore:}}}}

 \sf \: Total \: surface \: area \: of \: cone \: is \: 4158 {m}^{2} \: and \\ \sf \: curved \: surface \: area \: of \: cone \: is \: 2772 {m}^{2}.

Similar questions