Math, asked by rumeysa7061, 9 months ago


slm herkese ...


a=?

not report my questions for no reason​

Attachments:

Answers

Answered by RJRishabh
10

Doğru cevap A seçeneğidir.

Üstel fonksiyonun temel özelliklerini zaten bildiğinizi varsayıyorum.

#Teşekkürler !

Attachments:
Answered by tahseen619
8

The right option is A .

Step-by-step explanation:

To Solve:

\sqrt{2 \sqrt[3]{  \frac{1}{2} \sqrt[5]{ \frac{1}{4} } } }   =  {2}^{a}

Solution:

Remember, This question is related to Laws of Indices.

So, 1st split the exponent in smaller form. i.e 27 = 3³ and 6² = 2². 3²

2nd Solve by using laws of Indices as required.

L.H.S

 \sqrt{2 \sqrt[3]{  \frac{1}{2} \sqrt[5]{ \frac{1}{4} } } }   \\  \\  \sqrt{ 2\sqrt[3]{  { \frac{1}{2}.  \sqrt[5]{ {( \frac{1}{2}) }^{2} } }  }}   \\  \\  \sqrt{ 2\sqrt[3]{ \frac{1}{2}. { \frac{1}{2} }^{ (\frac{2}{5})}}}   \\  \\  \sqrt{2 {( \frac{1}{2} )}^{(1 +  \frac{2}{5}) \frac{1}{3}  } }   \\  \\  \sqrt{2 {( \frac{1}{2} )}^{(  \frac{5 + 2}{5}) \frac{1}{3}  } }  \\  \\ \sqrt{2 {( \frac{1}{2} )}^{(\frac{7}{15})  } }  \\  \\  \sqrt{2. {2}^{ - 1( \frac{7}{15} )} }  = 0 \\  \\  \sqrt{ {2}^{1 -  \frac{7}{15} } }  \\  \\ \sqrt{ {2}^{ \frac{8}{15} } }  \\  \\  {2}^{ \frac{8}{15} \times  \frac{1}{2} }  \\  \\  {2}^{ \frac{4}{15} }

Now, Comparing the L.H.S and R.H.S

 {2}^{ \frac{4}{15} }  =  {2}^{a}\\\\ [\text{Eliminating the base from both side}]   \\\\\frac{4}{15}  = a

The, required answer is a = 4/15.

{\boxed{\blue{\text{ Some Important Laws of Indices}}}}

{a}^{n}.{a}^{m}={a}^{(n + m)}

{a}^{-1}=\dfrac{1}{a}

\dfrac{{a}^{n}}{ {a}^{m}}={a}^{(n-m)}

{({a}^{c})}^{b}={a}^{b\times c}={a}^{bc}

 {a}^{\frac{1}{x}}=\sqrt[x]{a}

[\text{where all variables are real and greater than 0}]

Similar questions