Math, asked by cieevx, 1 month ago

slope of the normal to the curve :- X2 - xy + 3y² - 5y = 0 and x = 2 ? ​

Attachments:

Answers

Answered by mathdude500
19

 \green{\large\underline{\sf{Solution-}}}

Given curve is

\rm :\longmapsto\: {x}^{2} - xy +  {3y}^{2} - 5y = 0

Now, when x = 2, we get

\rm :\longmapsto\: {2}^{2} - (2)y +  {3y}^{2} - 5y = 0

\rm :\longmapsto\: 4 - 2y +  {3y}^{2} - 5y = 0

\rm :\longmapsto\: {3y}^{2} - 7y  + 4= 0

\rm :\longmapsto\: {3y}^{2} - 3y - 4y  + 4= 0

\rm :\longmapsto\:3y(y - 1) - 4(y - 1) = 0

\rm :\longmapsto\:(y - 1)(3y - 4) = 0

\bf\implies \:y = 1 \:  \: or \:  \: \dfrac{4}{3}

So, Coordinates are

\bf\implies \:P(2,1) \:  \: and \:  \: Q\bigg(2, \: \dfrac{4}{3} \bigg)

Now, Consider

\rm :\longmapsto\: {x}^{2} - xy +  {3y}^{2} - 5y = 0

On differentiating both sides w. r. t. x, we get

\rm :\longmapsto\: \dfrac{d}{dx}[{x}^{2} - xy +  {3y}^{2} - 5y] = 0 \:

\rm :\longmapsto\:2x - \bigg[x\dfrac{dy}{dx}  + y.1\bigg] + 6y\dfrac{dy}{dx} - 5\dfrac{dy}{dx} = 0

\rm :\longmapsto\:2x - x\dfrac{dy}{dx}  -y + 6y\dfrac{dy}{dx} - 5\dfrac{dy}{dx} = 0

\rm :\longmapsto\:- x\dfrac{dy}{dx} + 6y\dfrac{dy}{dx} - 5\dfrac{dy}{dx} =  - 2x+y

\rm :\longmapsto\:(-x + 6y - 5)\dfrac{dy}{dx}  =  - 2x +y

\bf\implies \:\dfrac{dy}{dx} =   -  \: \dfrac{(2x - y)}{-x + 6y - 5}

So, slope of tangent at P is given by

\bf\implies \:\dfrac{dy}{dx}_{(2,1)} =   -  \: \dfrac{(4 - 1)}{-2 + 6 - 5}  =  3

\rm :\longmapsto\:Slope \: of \: normal =  - \dfrac{1}{ \:  \:  \:  \:  \: \dfrac{dy}{dx}_{(2,1)}}

\bf\implies \:Slope \: of \: normal =- \dfrac{1}{3}

Now, Slope of tangent at Q

\bf\implies \:\dfrac{dy}{dx}_{(2, \frac{4}{3} )} =   -  \: \dfrac{4 - \dfrac{4}{3}}{-2+ 6 \times \dfrac{4}{3}  - 5}

\bf\implies \:\dfrac{dy}{dx}_{(2, \frac{4}{3} )} =   -  \: \dfrac{\dfrac{12 - 4}{3}}{-2+ 8  - 5}

\bf\implies \:\dfrac{dy}{dx}_{(2, \frac{4}{3} )} =   -  \: \dfrac{8}{3}

Hence,

\bf\implies \:Slope \: of \: normal = \dfrac{3}{8}

▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬

Additional Information :-

Let y = f(x) be any curve, then line which touches the curve y = f(x) exactly at one point say P is called tangent and that very point P, if we draw a perpendicular on tangent, that line is called normal to the curve at P.

2. If tangent is parallel to x - axis, its slope is 0.

3. If tangent is parallel to y - axis, its slope is not defined

4. Two lines having slope M and m are parallel, iff M = m

5. If two lines having slope M and m are perpendicular, iff Mm = - 1.

Answered by Anonymous
1

Given:

equation of the curve: x^2-xy+3y^2-5y=0

equation of the line: x=2

To find:

The slope of the normal to the curve

Solution:

Value of y when x=2 is:

2^2-2y+3y^2-5y=0

3y^2-7y+4=0

3y^2-3y-4y+4=0

3(y-1)-4(y-1)=0

(y-1)(3y-4)=0

y=1, \frac{4}{3}

So we get two co-ordinates (2,1) and (2, \frac{4}{3})

Now, to get the slope we differentiate the given equation,

\frac{d}{dx}[x^2-xy+3y^2-5y]=0

2x-[xy'+y]+6yy'-5y'=0

-xy'+6yy'-5y'=-2x+y

y'=\frac{-2x+y}{-x+6y-5}

So, we will get two normals and their respective slopes are as follows:

For point (2,1) , slope of tangent is

y'_{(2,1)}=-\frac{4-1}{-2+6-5}

=3

So, the slope of the normal is -\frac{1}{3}.

For point (2, \frac{4}{3}), slope of tangent is

y'_{(2,\frac{4}{3})}=-\frac{4-\frac{4}{3} }{-2+8-5}

=-\frac{8}{3}

So, the slope of the normal is \frac{3}{8}.

Hence, the required slope values are -\frac{1}{3} and  \frac{3}{8}.

Similar questions