Slove by only:-
❥modrators
❥ nice users
♡no smap please
please do both please❥need answer till 1pm please
Answers
Answer:
Q1.
Consider Δ QBC. Since it is a right angled triangle, we can use the pythagorean theorem to find the measure of the unknown third side.
Applying the Pythagoras Theorem we get,
⇒ QB² + BC² = QC²
Substituting the known values, we get:
⇒ 12² + BC² = 15²
⇒ 144 + BC² = 225
⇒ BC² = 225 - 144
⇒ BC² = 81
⇒ BC = √81 = 9 m.
Hence the measure of side BC is 9 m.
Consider ΔPAC. Applying Pythagoras Theorem, we get:
⇒ PA² + AC² = PC²
⇒ 9² + AC² = 15²
⇒ 81 + AC² = 225
⇒ AC² = 225 - 81
⇒ AC² = 144
⇒ AC = √144 = 12 m
Hence the measure of side AC is 12 m.
Hence the width of road AB = AC + BC
⇒ Width (AB) = 12 + 9 = 21 m.
Q2.
Since it is a right angled triangle, we can apply the Pythagoras Theorem. Hence we get:
⇒ AC² + BC² = AB²
⇒ (5√3)² + 5² = AB²
⇒ (25 × 3) + 25 = AB²
⇒ 75 + 25 = AB²
⇒ 100 = AB²
⇒ AB = √100 = 10 m.
Hence the length of the ladder is 10 m.
Q3.
Since Angle Q is 90 degrees, ΔPQR is a right angled triangle. It is given that the ratio of PQ/PR = 1/2. Cross multiplying the terms we get:
⇒ PR = 2 PQ
Now applying Pythagoras Theorem we get:
⇒ PQ² + QR² = PR²
⇒ PQ² + QR² = ( 2 PQ )²
⇒ PQ² + QR² = 4 PQ²
⇒ QR² = 4 PQ² - PQ²
⇒ QR² = 3 PQ²
⇒ QR = √ (3 PQ²)
⇒ QR = PQ√3
Q4.
For two similar triangles ΔABC and ΔDEF, the relation between areas and their corresponding sides is given as:
According to the question,
Ratio of Areas = 25/9.
Ratio of Sides = ?
Hence the required answer is 5/3.
Q5.
Area 1 (ΔABC) = 144 cm²
Area 2 (ΔPQR) = 81 cm²
Side 1 (BC) = ?
Side 2 (QR) = 27 cm
Using the Area and Sides of similar triangles relation, we get:
⇒ 144/81 = (BC/27)²
Taking Square root on both sides we get:
⇒ √(144/81) = BC/27
⇒ 12/9 = BC/27
⇒ BC = (4/3) × 27
⇒ BC = 4 × 9 = 36 cm.
Hence the length of BC is 36 cm.
Q6.
(DE/PQ) = 4/9
Area(ΔDEF) / Area(ΔPQR) = ?
Using the Area and Sides of similar triangles relation, we get:
⇒ Area(ΔDEF) / Area(ΔPQR) = (DE/PQ)²
⇒ Area(ΔDEF) / Area(ΔPQR) = (4/9)²
⇒ Area(ΔDEF) / Area(ΔPQR) = 16/81
Hence the required ratio is 16 : 81 (or) 16/81.
Q7 and Q8 are answered in the attachments.
Answer:
Consider Δ QBC. Since it is a right angled triangle, we can use the pythagorean theorem to find the measure of the unknown third side.
Applying the Pythagoras Theorem we get,
⇒ QB² + BC² = QC²
Substituting the known values, we get:
⇒ 12² + BC² = 15²
⇒ 144 + BC² = 225
⇒ BC² = 225 - 144
⇒ BC² = 81
⇒ BC = √81 = 9 m.
Hence the measure of side BC is 9 m.
Consider ΔPAC. Applying Pythagoras Theorem, we get:
⇒ PA² + AC² = PC²
⇒ 9² + AC² = 15²
⇒ 81 + AC² = 225
⇒ AC² = 225 - 81
⇒ AC² = 144
⇒ AC = √144 = 12 m
Hence the measure of side AC is 12 m.
Hence the width of road AB = AC + BC
⇒ Width (AB) = 12 + 9 = 21 m.
Q2.
Since it is a right angled triangle, we can apply the Pythagoras Theorem. Hence we get:
⇒ AC² + BC² = AB²
⇒ (5√3)² + 5² = AB²
⇒ (25 × 3) + 25 = AB²
⇒ 75 + 25 = AB²
⇒ 100 = AB²
⇒ AB = √100 = 10 m.
Hence the length of the ladder is 10 m.
Q3.
Since Angle Q is 90 degrees, ΔPQR is a right angled triangle. It is given that the ratio of PQ/PR = 1/2. Cross multiplying the terms we get:
⇒ PR = 2 PQ
Now applying Pythagoras Theorem we get:
⇒ PQ² + QR² = PR²
⇒ PQ² + QR² = ( 2 PQ )²
⇒ PQ² + QR² = 4 PQ²
⇒ QR² = 4 PQ² - PQ²
⇒ QR² = 3 PQ²
⇒ QR = √ (3 PQ²)
⇒ QR = PQ√3
Q4.
For two similar triangles ΔABC and ΔDEF, the relation between areas and their corresponding sides is given as:
\implies \dfrac{ar(\Delta_1)}{ar(\Delta_2)} = \dfrac{AB^2}{DE^2} = \dfrac{BC^2}{EF^2} = \dfrac{AC^2}{DF^2}⟹ar(Δ2)ar(Δ1)=DE2AB2=EF2BC2=DF2AC2
According to the question,
Ratio of Areas = 25/9.
Ratio of Sides = ?
\begin{gathered}\implies \dfrac{25}{9} = \dfrac{AB^2}{PQ^2}\\\\\\\implies \sqrt{\dfrac{25}{9}} = \dfrac{AB}{PQ}\\\\\\\implies \dfrac{AB}{PQ} = \dfrac{5}{3} \:\:(or)\:\:5:3\end{gathered}⟹925=PQ2AB2⟹925=PQAB⟹PQAB=35(or)5:3